🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Optimal Strategy for Modelling Turbulent Flows with Ensemble Averaging on High Performance Computing Systems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The high-fidelity modelling of turbulent flows is one of the actual problems, actively performed on high performance computing systems. The main issue for these simulations is related to the need of long time averaging to obtain reliable statistics of interest for scientists and engineers. The two recent publications deal with the problem of long time integration, suggesting an ensemble averaging approach, which allows to replace the single long time integration with multiple simulations of much shorter time intervals. These papers provide two different simulation scenarios to perform the simulations. The current paper proposes the generalized approach combining them all together. The paper provides the criterion to choose the optimal scenario, minimizing the overall simulation time for a given number of computational resources. The proposed generalization substantially extends the range of applicability for the suggested ensemble averaging methodology. The validation results considered in the paper demonstrate additional 20% simulation speedup for the generalized approach compared to the basic ones proposed earlier.

Авторлар туралы

B. Krasnopolsky

Institute of Mechanics

Хат алмасуға жауапты Автор.
Email: krasnopolsky@imec.msu.ru
Ресей, Michurinskii pr. 1, Moscow, 119192

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018