🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Generalization of the Smirnov Operator and Differential Inequalities for Polynomials


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The question raised in this article goes back to the problem posed by the famous chemist D. I. Mendeleev in 1887 (solved by A. A. Markov in 1889). In the next 100 years, the Mendeleev problem was repeatedly modificated and solved. Its essence is in the description of conditions under which the inequality ∣f(z)∣ ≤ ∣F(z)∣ for polynomials f and F and for z from a fixed set implies the inequality ∣L[f](z)∣ ≤ ∣L[F](z)∣ for some differential operator L. In the presented paper, we consider a differential operator of special type and arbitrary order. In particular, we obtain a sharp upper estimate for higher order derivatives of arbitrary polynomial in terms of the polynomial values.

About the authors

E. Kompaneets

Petrozavodsk State University

Author for correspondence.
Email: g_ek@inbox.ru
Russian Federation, Petrozavodsk, 185910 Republic of Karelia

V. Starkov

Petrozavodsk State University

Author for correspondence.
Email: VstarV@list.ru
Russian Federation, Petrozavodsk, 185910 Republic of Karelia

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.