🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

GPU Acceleration of Dense Matrix and Block Operations for Lanczos Method for Systems Over GF(2)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The algebraic operations with the dense matrices and blocks are bounding the scalability of block Lanczos–Montgomery method, that is used for the linear part in the RSA decomposition problem. This paper explores the possibility of implementation of the following algebraic operations over field \(\mathbb{F}_2\) on GPU: (1) multiplication of two 64k × 64k matrices; (2) multiplication of two N × 64k blocks. For matrix multiplication, we consider two algorithms: (a) the “naive” algorithm; (b) the “fast” algorithm by 4 Russians. For block multiplication, we consider just the “naive” algorithm. It seems that by now this is the only work where BLAS acceleration over \(\mathbb{F}_2\) are relatively successful accelerated on GPU.

About the authors

N. L. Zamarashkin

Marchuk Institute of Numerical Mathematics

Author for correspondence.
Email: nikolai.zamarashkin@gmail.com
Russian Federation, Moscow, 119333

D. A. Zheltkov

Marchuk Institute of Numerical Mathematics

Author for correspondence.
Email: dmitry.zheltkov@gmail.com
Russian Federation, Moscow, 119333

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.