🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Meromorphization of M. I. Kinder’s Formula Via the Change of Contours


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Parametrical families of the exterior inverse boundary value problems going back to well-known R. B. Salimov’s book became a plentiful source of new statements and methods in the study of the above problems. Critical points of conformal radii acting as the free parameters of such problems show interesting interrelations between their parametrical dynamics and geometric behavior. M.I. Kinder’s formula connecting the numbers of local maxima and saddles of a conformal radius is generalized here on the case when the derivative of the mapping function has zeros and poles in the unit disk and on its boundary.

About the authors

A. V. Kazantsev

Kazan (Volga Region) Federal University

Author for correspondence.
Email: avkazantsev63@gmail.com
Russian Federation, ul. Kremlevskaya 18, Kazan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.