🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Effective Signal Extraction Via Local Polynomial Approximation Under Long-Range Dependency Conditions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the signal extraction problemwhere a smooth signal is to be estimated against a long-range dependent noise. We consider an approach employing local estimates and derive a theoretically optimal (maximum likelihood) filter for a polynomial signal. On its basis, we propose a practical signal extraction algorithm and adapt it to the extraction of quasi-seasonal signals. We further study the performance of the proposed signal extraction scheme in comparison with conventional methods using the numerical analysis and real-world datasets.

About the authors

A. V. Artemov

Lomonosov Moscow State University; Yandex Data Factory

Author for correspondence.
Email: artemov@physics.msu.ru
Russian Federation, Lomonosovskii pr. 27-1, Moscow, 119991; ul. L’va Tolstogo 16, Moscow, 119021

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.