🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Operator Analogy of Quantum Pseudo-Logic


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we study linear operators on real and complex Euclidean spaces which are real-orthogonal projections. It is a generalization of such standard (complex) orthogonal projections for which only the real part of scalar product vanishes. We note the difference between properties of real-orthogonal projections on real and on complex spaces. We can compare some partial order properties of orthogonal and of real-orthogonal projections. We prove that the set of all real-orthogonal projections in a finite-dimensional complex or real space is a quantum pseudo-logic.

About the authors

M. Matvejchuk

Kazan National Research Technical University

Author for correspondence.
Email: Marjan.Matvejchuk@yandex.ru
Russian Federation, ul. Karla Marksa 10, Kazan, 420111

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.