🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On convergence of combinatorial Ricci flow on surfaces with negative weights


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chow and Lou in 2003 had shown that the analogue of the Hamilton Ricci flow on surfaces in the combinatorial setting converges to the Thruston’s circle packing metric. The combinatorial setting includes weights defined for edges of a triangulation. Crucial assumption in the paper of Chow and Lou was that the weights are nonnegative. We show that the same results on convergence of Ricci flow can be proved under weaker condition: some weights can be negative and should satisfy certain inequalities. As a consequence we obtain theorem of existence of Thurston’s circle packing metric for a wider range of weights.

About the authors

R. Yu. Pepa

Faculty of Mechanics and Mathematics

Author for correspondence.
Email: pepa@physics.msu.ru
Russian Federation, Moscow, 119991

Th. Yu. Popelensky

Faculty of Mechanics and Mathematics

Email: pepa@physics.msu.ru
Russian Federation, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.