🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The miles theorem and new particular solutions to the Taylor–Goldstein equation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The direct Lyapunov method is used to prove the absolute linear instability of steadystate plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field with respect to plane perturbations both in the Boussinesq and non-Boussinesq approximations. A strict description is given for the applicability of the known necessary condition for linear instability of steady-state plane-parallel shear flows of an ideal nonuniform (by density) incompressible fluid in the gravity field both in the Boussinesq and non-Boussinesq approximations (the Miles theorem). Analytical examples of illustrative character are constructed.

About the authors

A. A. Gavrilieva

Larionov Institute of Physical and Technical Problems of the North

Author for correspondence.
Email: gav-ann@yandex.ru
Russian Federation, Yakutsk, 677891

Yu. G. Gubarev

Lavrentyev Institute of Hydrodynamics; Novosibirsk National Research State University

Email: gav-ann@yandex.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

M. P. Lebedev

Larionov Institute of Physical and Technical Problems of the North; Ammosov North-Eastern Federal University

Email: gav-ann@yandex.ru
Russian Federation, Yakutsk, 677891; Yakutsk, 677000

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.