🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Weak regularity of degenerate elliptic equations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let φ: Ω → D be a conformal mapping of a bounded simply connected planar domain Ω onto the unit disc D ⊂ ℝ2. We prove existence and uniqueness in Ω of weak solutions of a degenerate Poisson equation for a hyperbolic weight h(z) = |φz|2 in a corresponding two weighted Sobolev space W21 (Ω, h, 1).Here φz is a complex derivative. We also study weak regularity of the solutions in conformal regular domains. The domain Ω is a conformal regular domain [4] if (φ−1)wLα(D) for some α > 2.

About the authors

V. Gol’dshtein

Department of Mathematics

Author for correspondence.
Email: vladimir@bgu.ac.il
Israel, Beer Sheva, 84105

A. Ukhlov

Department of Mathematics

Email: vladimir@bgu.ac.il
Israel, Beer Sheva, 84105

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.