🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

A uniqueness theorem for linear elliptic equations with dominating derivative with respect to \(\bar z\)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interior uniqueness theorem for analytic functions was generalized by M.B. Balk to the case of polyanalytic functions of order n. He proved that, if the zeros of a polyanalytic function have an accumulation point of order n, then this function is identically zero. M.F. Zuev generalized this result to the case of metaanalytic functions. In this paper, we generalize the interior uniqueness theorem to solutions of linear homogeneous elliptic differential equations of order n with analytic coefficients whose senior derivative is the n-th power of the Cauchy–Riemann operator.

About the authors

I. A. Bikchantaev

Kazan Federal University

Author for correspondence.
Email: ibikchan@kpfu.ru
Russian Federation, Kremlevskaya ul. 18, Kazan, 420008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.