Machining technology, digital modelling and shape control device for large parts

Cover Page

Cite item

Abstract

Introduction. The development of a method for controlling the accuracy parameters of large axisymmetric bodies is an urgent task that is being solved by specialists from various industries. Application for adjustment and correction of machining based on the measurement of surface shape parameters directly during machining is shown. Purpose of work is to improve mobile processing technologies using special measuring devices and processing module. For this, the problems of development and analysis of mathematical models that describe the process of basing and machining of a riding ring as a cylindrical object with a non-stationary axis of rotation is solved. A study of the methodology is carried out, control schemes are designed, and equipment for processing mobile devices is developed. The methods of research are the analysis of the developed mathematical models, taking into account the assignment of effective technological modes. Three-dimensional and simulation modeling of processing, hardware-software implementation of proposed solutions, and statistical processing of measurement results are carried out. Results and discussion. The algorithm and methodology are tested with a three-dimensional simulation model. The presented methodology for measuring and calculating the allowance for mechanical restoration can significantly reduce machining time compared to active form control and compared to the traditional method of assigning an allowance for machining. The measurement and adjustment of the allowance based on the measurement data is not carried out after each measurement, but only in the case of transition to finishing transitions or for accuracy control. It is determined that by providing a single technological base for each individual technological transition within the framework of the mobile technology of machining of the rolling surface of the riding rings of technological drums, the accuracy and speed of processing increase. An original design of the device for monitoring parameters is developed; an experimental assembly and a laboratory model of the riding ring are made.

About the authors

S. P. Timofeev

Email: timofeevsp@inbox.ru
Limited Liability Company «Promagro», 370а Rzhevskoe shosse, Shebekino, 309290, Russian Federation, timofeevsp@inbox.ru

A. V. Grinek

Email: grinyokann@gmail.com
Ph.D. (Engineering), Associate Professor, Admiral Ushakov State Maritime University, 93 Lenin's avenue, Novorossiysk, 353918, Russian Federation, grinyokann@gmail.com

A. V. Khurtasenko

Email: hurtintbel@mail.ru
Ph.D. (Engineering), Associate Professor, Belgorod State Technological University named after V.G. Shukhov, 46 Kostyukova st., Belgorod, 308012, Russian Federation, hurtintbel@mail.ru

I. P. Boychuk

Email: igor_boichuk@mail.ru
Ph.D. (Engineering), Admiral Ushakov State Maritime University, 93 Lenin's avenue, Novorossiysk, 353918, Russian Federation, igor_boichuk@mail.ru

References

  1. Phillips Kiln Services. – URL: http://www.pkse.co.uk (accessed: 13.04.2022).
  2. Boateng A.A. Rotary kilns: transport phenomena and transport processes. – Elsevier, 2015. – 390 p. – ISBN 9780128038536.
  3. Design and mechanical behavior analysis of two-stall cement rotary kiln cylinder / W. Wei, Y. Peng, L. Du, Y. Cai // International Journal of Performability Engineering. – 2020. – Vol. 16, iss. 6. – P. 883–895. – doi: 10.23940/ijpe.20.06.p7.883895.
  4. Anti-fatigue optimization of kiln shell at intermittent multi-body contact state / X. Lei, Y. Xiao, G. Chen, Y. Liu, X. Zhao // Sichuan Daxue Xuebao (Gongcheng Kexue Ban) = Journal of Sichuan University. Engineering Science Edition. – 2014. – Vol. 46, iss. 6. – P. 185–190. – In Chinese.
  5. Wei G., Tan Q. Measurement of shaft diameters by machine // Applied Optics. – 2011. – Vol. 50, iss. 19. – P. 3246–3253. – doi: 10.1364/AO.50.003246.
  6. Syusyuka E.N., Amineva E.Kh. Control of mobile equipment for the processing of marine shaft lines // Journal of Physics: Conference Series. – 2021. – Vol. 2061. – P. 012083. – doi: 10.1088/1742-6596/2061/1/012083.
  7. Syusyuka E.N. Possibility of applying X-ray methods to control the surface quality of a shaft line after finishing // Journal of Physics: Conference Series. – 2021. – Vol. 2061. – P. 012022. – doi: 10.1088/1742-6596/2061/1/012022.
  8. Rotary kiln cylinder deformation measurement and feature extraction based on EMD method / K. Zheng, Y. Zhang, C. Zhao, L. Liu // Engineering Letters . – 2015. – Vol. 23, iss. 4. – P. 283–291.
  9. Mogilny S., Sholomitskii A. Precision analysis of geometric parameters for rotating machines during cold alignment // Procedia Engineering. – 2017. – Vol. 206. – P. 1709–1715. – doi: 10.1016/j.proeng.2017.10.702.
  10. Li M., Yu J.P. Status and development of geometric measurement in industry // Chinese Journal of Scientific Instrument. – 2017. – Vol. 38, iss. 12. – P. 2959–2971. – In Chinese.
  11. Identification and kinematic calculation of laser tracker errors / J. Conte, J. Santolaria, A.C. Majarena, А. Brau, J.J. Aguilar // Procedia Engineering. – 2013. – Vol. 63. – P. 379–387. – doi: 10.1016/j.proeng.2013.08.190.
  12. Farooqui S.A., Doiron T., Sahay C. Uncertainty analysis of cylindricity measurements using bootstrap method // Measurement. – 2009. – Vol. 42, iss. 4. – P. 524–531. – doi: 10.1016/j.measurement.2008.09.008.
  13. Koziolek S., Derlukiewicz D., Ptak M. Design process innovation of mechanical objects with the use of design for Six Sigma methodology // Solid State Phenomena. – 2010. – Vol. 165. – P. 274–279. – doi: 10.4028/ href='www.scientific.net/ssp.165.274' target='_blank'>www.scientific.net/ssp.165.274.
  14. A self-calibration rotational stitching method for precision measurement of revolving surfaces / Y. Liu, C.F. Cheung, X. Feng, C.J. Wang, R.K. Leach // Precision Engineering. – 2018. – Vol. 54. – P. 60–69. – doi: 10.1016/j.precisioneng.2018.05.002.
  15. Ramaswami H., Kanagaraj S., Anand S. An inspection advisor for form error in cylindrical features // International Journal of Advanced Manufacturing Technology. – 2009. – Vol. 40. – P. 128–143. – doi: 10.1007/s00170-007-1321-4.
  16. Variable optical null based on a yawing CGH for measuring steep acylindrical surface / J. Peng, D. Chen, H. Guo, J. Zhong, Y. Yu // Optics Express. – 2018. – Vol. 26, iss. 16. – P. 20306–20318. – doi: 10.1364/OE.26.020306.
  17. Influence of eccentricity and tilt of cylindrical part’;s axis on the measurement results of its diameters / Z. Zhao, B. Li, G. Zhang, H. Yu, M. Shang // Measurement. – 2019. – Vol. 138. – P. 232–239. – doi: 10.1016/j.measurement.2019.01.085.
  18. Stamboliska Z., Rusinski E., Moczko P. Proactive condition monitoring of low-speed machines. – Cham: Springer International Publishing, 2015. – P. 53–68. – ISBN 978-3-319-10493-5. – ISBN 3319104934.
  19. Li X., Shen Y., Wang S. Dynamic modeling and analysis of the large-scale rotary machine with multi-supporting // Shock and Vibration. – 2011. – Vol. 18. – P. 53–62. – doi: 10.1155/2011/541049.
  20. An online straightness deviation measurement method of rotary kiln cylinder / K. Zheng, Y. Zhang, L. Liu, C. Zhao // Tehnicki Vjesnik. – 2017. – Vol. 24 (5). – P. 1297–1305. – doi: 10.17559/TV-20150426160032.
  21. Ziga A., Karac A., Vukojevic D. Analytical and numerical stress analysis of the rotary kiln ring // Tehnicki Vjesnik. – 2013. – Vol. 20. – P. 941–946.
  22. Guo Y., Wang Y., Liu X. Real-time optical detection system for monitoring roller condition with automatic error compensation // Optics and Lasers in Engineering. – 2014. – Vol. 53. – P. 69–78. – doi: 10.1016/j.optlaseng.2013.08.007.
  23. Патент № 161400 Российская Федерация, МПК G 01 B 5/20 (2006.01). Измерительное устройство для определения формы поверхностей крупногабаритных деталей – тел вращения: № 2015152710/28: заявл. 08.12.2015; опубл. 20.04.2016, Бюл. № 11 / С.П. Тимофеев, А.В. Хуртасенко, И.В. Шрубченко, М.Н. Воронкова, А.В. Гринек; заявитель и патентообладатель БГТУ им. В.Г. Шухова.
  24. Способ контроля параметров геометрической точности судовых валопроводов / А.В. Гринек, С.П. Тимофеев, С.И. Кондратьев, А.В. Хуртасенко // Морские интеллектуальные технологии. – 2020. – № 3, т. 1. – С. 90–97. – doi: 10.37220/MIT.2020.49.3.011.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).