ОПТИЧЕСКАЯ БИОМЕТРИЯ ГЛАЗА: ПРИНЦИП И ДИАГНОСТИЧЕСКИЕ ВОЗМОЖНОСТИ МЕТОДА


Цитировать

Полный текст

Аннотация

Оптическая биометрия - метод измерения биометрических параметров глаза: переднезадней оси, глубины передней камеры, толщины хрусталика и сетчатки, диаметра роговицы и кератометрии, основанный на лазерной интерферометрии. В обзоре представлен принцип метода, его преимущества и недостатки, показания и противопоказания, и сравнительная оценка характеристик современных оптических биометров: IOL-Master 500, Lenstar LS 900, Aladdin, OA-1000, OA-2000, AL-3000, AL-Scan, Galilei G6, IOL-Master 700.

Об авторах

Т. Н Киселева

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

О. Г Оганесян

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

Любовь Ивановна Романова

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

Email: info@igb.ru; l.rommanova@gmail.com
младший научный сотрудник отдела ультразвуковых исследований ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России 105062, Москва, РФ

С. В Милаш

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

А. В Пенкина

ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России

105062, Москва, РФ

Список литературы

  1. Eleftheriadis H. IOL-Master biometry: refractive results of 100 consecutive cases. Br. J. Ophthalmol. 2003; 87: 960-3.
  2. Haigis W. Challenges and approaches in modern biometry and IOL calculation. Saudi J. Ophthalmol. 2012; 26: 7-12.
  3. Dietlein T.S., Roessler G., Luke Ch., Dinslage S., Roters S., Jacobi Ph.C. et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry. J. Cataract Refract. Surg. 2005; 31: 1006-10.
  4. Manvikar S.R., Allen D., Steel D.H. Optical biometry in combined phacovitrectomy. J. Cataract Refract. Surg. 2009; 35: 64-9.
  5. Rahman R., Bong C.X., Stephenson J. Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment. Retina. 2014; 34: 1415-20.
  6. Hill W., Angeles R., Otani T. Evaluation of a new IOL-Master algorithm to measure axial length. J. Cataract Refract. Surg. 2008; 34: 920-4.
  7. Norrby S. Sources of error in intraocular lens power calculation J. Cataract Refract. Surg. 2008; 34 (3): 368-76.
  8. Donald T. IOL-Master 700: A debut of Swept-Source OCT technology. J Cataract Refract. Surg. today Europe. 2015; 8: 67-9.
  9. Hitzenberger C.K. Optical measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. 1991; 32 (3): 616-24.
  10. Chen Y.A., Hirnschall N., Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer J. Cataract Refract. Surg. 2011; 37: 513-7.
  11. Lege B.A., Haigis. W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch. Clin. Exp. Ophthalmol. 2003; 242 (1): 8-12.
  12. Santodomingo-Rubido J., Mallen E.A., Gilmartin B. et al. A new non-contact optical device for ocular biometry. Br. J. Ophthalmol. 2002; 86: 458-62.
  13. Tehrani M., Krummenauer F., Kumar R., Dick H.B. Comparison of biometric measurements using partial coherence interferometry and applanation ultrasound. J. Cataract Refract. Surg. 2003; 29: 747-52.
  14. Findl O., Kriechbaum K., Sacu S. et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J. Cataract Refract. Surg. 2003; 29: 1950-5.
  15. Haigis W. Pseudophakic correction factors for optical biometry. Graefes Arch. Clin. Exp. Ophthalmol. 2001; 239: 589-98.
  16. Kiss B., Findl O., Menapace R. et al. Refractive outcome of cataract surgery using partial coherence interferometry and ultrasound biometry: clinical feasibility study of a commercial prototype II. J. Cataract Refract. Surg. 2002; 28: 230-4.
  17. Kola M., Duran H., Turk A., Molla Mehmetoglu S., Kalkisim A., Erdol H. Evaluation of the repeatability and the reproducibility of AL-Scan measurements obtained by residents. J. Ophthalmol. 2014; 7: 1-6.
  18. Packer M., Fine I.H., Hoffman R.S., Coffman P.G., Brown L.K. Immersion A-scan compared with partial coherence interferometry: outcomes analysis. J. Cataract Refract. Surg. 2002; 28: 239-42.
  19. Vogel A., Dick H.B., Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J. Cataract Refract. Surg. 2001; 27: 1961-8.
  20. Матросова Ю.В., Халеева Д.В. Сравнительная оценка эффективности ортокератологии и склеропластики в торможении прогрессирования миопии. Вестник Тамбовского университета. 2015; 20 (3): 639-41.
  21. Тарутта Е.П., Милаш С.В., Тарасова Н.А., Романова Л.И., Маркосян Г.А., Епишина М.В. Периферическая рефракция и контур сетчатки у детей с миопией по результатам рефрактометрии и частично когерентной интерферометрии. Вестн. офтальмол. 2014; (6): 44-9.
  22. Drexler W., Findl O., Menapace R., Rainer G., Vass C., Hitzenberger C.K., Fercher A.F. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am. J. Ophthalmol. 1998; 126 (4): 524-34.
  23. Haigis W., Lege B., Miller N. et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch. Clin. Exp. Ophthalmol. 2000; 238: 765-73.
  24. Zhang L., Sy M.E., Mai H., Yu F., Hamilton D.R. Effect of posterior corneal astigmatism on refractive outcomes after toric intraocular lens implantation. J. Cataract Refract. Surg. 2015; 41: 84-9.
  25. Aristodemou P., Knox Cartwright N.E., Sparrow J.M., Johnston R.L. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J. Cataract Refract Surg. 2011; 37 (1): 50-62.
  26. Srinivasan S. Optical biometry: Every little bit helps. J. Cataract Refract. Surg. 2015; 41 (7): 1345-6.
  27. Dawson Sh., Hogan S., Kirk R., Paterson M. MSAC’s assessment of partial coherence interferometry. In: Optical biometry using partial coherence interferometry prior to cataract surgery. 2003: ix.
  28. Rohrer K., Frueh B.E., Walti R., Clemetson I.A., Tappeiner C., Goldblum D. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology. 2009; 116: 2087-92.
  29. Nemeth J., Fekete O., Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J. Cataract Refract. Surg. 2003; 29: 85-8.
  30. Adler G., Shahar J., Kesner R., Rosenfeld E., Fischer N., Loewenstein A., Kurtz Sh. Effect of pupil size on biometry measurements using the IOLMaster. Am. J. Ophthalmol. 2015; 159: 940-4.
  31. Mandal P., Berrow E., Naroo S. Validity and repeatability of the Aladdin ocular biometer. Br. J. Ophthalmol. 2014; 98 (2): 256-8.
  32. Стебнев С.Д., Складчикова Н.И. Эффективность использования оптического биометра “LENSTAR LS 900, Haag-Streit” в достижении “рефракции цели” при имплантации интраокулярных линз “премиум-класса” фирмы Аlcon. Современные технологии в офтальмологии. 2014; (3): 89.
  33. Verkicharla P.K., Mallen E.А., Atchison D.A. Repeatability and comparison of peripheral eye lengths with two instruments. Optom Vis Sci. 2013; 90: 215-22.
  34. Hoffer K.J., Shammas H.J., Savini J., Huang G. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J. Cataract Refract Surg. 2016; 42: 62-7.
  35. Goebels S.C., Seitz B., Langenbucher A. Reproducibility of the optical biometer OA-1000 (Tomey). Biomed. Res. Int. 2014; 4: 1-6.
  36. Shammas H.J., Wetterwald, N., Potvin R. New mode for measuring axial length with an optical low-coherence reflectometer in eyes with dense cataract. J. Cataract Refract. Surg. 2015, 41: 1365-9.
  37. Измайлова С.Б., Малюгин Б.Э., Муравьев С.В., Семыкин А.Ю. Первый опыт использования системы Callisto eye в хирургии катаракты с имплантацией торической ИОЛ. Современные технологии в офтальмологии. 2014; (3): 37.
  38. Ladi J.S., Shah N.A. Comparison of central corneal thickness measurements with the GALILEI dual Scheimpflug analyzer and ultrasound pachymetry. Indian J. Ophthalmol. 2010; 58: 385-8.
  39. Karimian F., Feizi S., Doozandeh A., Faramarzi A., Yaseri M. Comparison of corneal tomography measurements using GALILEI, Orbscan II, and Placido disk-based topographer systems. J. Refract. Surg. 2011; 27: 502-8.
  40. Mauger T.F., Mahmoud A.M., Roberts C.J., Cheda L.V., et al. Comparison of placido, scheimpflug and сombined dual Scheimpflug-Placido technologies in evaluating anterior and posterior CLMI, SimK’s as well as Kmax in keratoconus and post refractive surgery ectasia. Int. J. Keratoconus ectatic. Corneal Dis. 2012; 1: 44-52.
  41. Olsen T., Hoffmann P. C constant: New concept for ray tracing-assisted intraocular lens power calculation. J. Cataract Refract. Surg. 2014; 40: 764-73.
  42. Bauer N., de Vries N., Webers C., Hendrikse F., Nuijts R. Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J. Cataract Refract. Surg. 2008; 34: 1483-8.
  43. Dardzhikova A., Shah C., Gimbel H.V. Early experience with the AcrySof toric IOL for the correction of astigmatism in cataract surgery. Can. J. Ophthalmol. 2009; 44: 269-73.
  44. Horn J.D. Status of toric intraocular lenses. Curr. Opin. Ophthalmol. 2007; 18: 58-61.
  45. Mendicute J., Iriqoyen C., Riuz M., Illarramendi I., Ferrer-Blasco T., Montes-Mico R. Foldable toric intraocular lens for astigmatism correction in cataract patients. J. Cataract Refract. Surg. 2008; 34: 601-7.
  46. Ruíz-Mesa R., Carrasco-Sánchez D., Díaz-Alvarez S.B., Ruíz-Mateos M.A., Ferrer-Blasco T., Montés-Micó R. Refractive lens exchange with foldable toric intraocular lens. Am. J. Ophthalmol. 2009, 147: 990-6.
  47. Park J.-H., Kang S.Y., Kim H.-M., Song J.-S. Differences in corneal astigmatism between partial coherence interferometry biometry and automated keratometry and relation to topographic pattern. J. Cataract Refract. Surg. 2011; 37: 1694-8.
  48. Hill W., Osher R., Cooke D., Solomon K., Sandoval H., Salas-Cervantes R., Potvin R. Simulation of toric intraocular lens results: Manual keratometry versus dual-zone automated keratometry from an integrated biometer. J. Cataract Refract. Surg. 2011; 37: 2181-7.
  49. Shammas H.J., Hoffer K.J. Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer. Am. J. Ophthalmol. 2012; 153: 55-61.
  50. Abulafia A., Barrett G.D., Kleinmann G., Ofir S., Levy A., Marcovich A.L. et al. Prediction of refractive outcomes with toric intraocular lens implantation. J. Cataract Refract. Surg. 2015; 41: 936-44.
  51. Shammas H.J., Ortiz S., Shammas M.C., Kim S.H., Chong C. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J. Cataract Refract. Surg. 2016; 42: 50-61.
  52. Akman А., Asena L., Güngör S.G. Evaluation and comparison of the new swept source OCT-based IOL-Master 700 with the IOLMaster 500. Br. J. Ophthalmol. 2015; 41: 2224-32.
  53. Buckhurst P.J., Wolffsohn J.S., Shah S., Naroo S.A., Davies L.N., Berrow E.J. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br. J. Ophthalmol. 2009; 93: 949-53.
  54. Godefroy K., Rousseau A., Mgarrech M., Barreau E., Labetoulle M. Biometry and intraocular lens power calculation results with a new optical biometry device: Comparison with the gold standard. J. Cataract Refract. Surg. 2014; 40: 593-600.
  55. Huang J., Savini G., Li J., Lu W., Wu F., Wang J., Li Ya. et al. Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOL-Master. Br. J. Ophthalmol. 2014; 98 (9): 1277-81.
  56. Hirnschall N., Murphy S., Pimenides D., Maurino V., Findl O. Assessment of a new averaging algorithm to increase the sensi- tivity of axial eye length measurement with optical biometry in eyes with dense cataract. J. Cataract Refract. Surg. 2011; 37: 45-9.
  57. Freeman G., и Pesudovs K. The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol. Scand. 2005; 83: 439-42.
  58. Tehrani M., Krummenauer F., Blom E., Dick H.B. Evaluation of the practicality of optical biometry and applanation ultrasound in 253 eyes. J. Cataract Refract. Surg. 2003; 29: 741-6.
  59. Rose L.T., Moshegov C.N. Comparison of the Zeiss IOLMaster and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin. Exp. Ophthalmol. 2003; 31: 121-4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2017


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».