Techniques in peripheral refraction research. Literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recent clinical and experimental studies have demonstrated the importance of peripheral optics of the eye in postnatal refractogenesis and the development of myopia. Considering the increased interest in the study of peripheral refraction, this literature review summarizes information on the techniques of studying peripheral refraction both in Russia and internationally.

About the authors

Sergey V. Milash

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: sergey_milash@yahoo.com
ORCID iD: 0000-0002-3553-9896

MD, researcher, department of refraction pathology, binocular vision and ophthalmoergonomics. Helmholtz National Medical Research Center of Eye Diseases

Russian Federation, Moscow, 105062

Rusudani R. Toloraya

Helmholtz National Medical Research Center of Eye Diseases

Email: sergey_milash@yahoo.com
ORCID iD: 0000-0002-7894-471X

MD, PhD

Russian Federation, Moscow, 105062

References

  1. Atchison DA. The Glenn A. Fry Award Lecture 2011: peripheral optics of the human eye. Optom. Vis. Sci. 2012;89(7): E954-66. doi: 10.1097/OPX.0b013e31825c3454.
  2. Tarutta EP, Iomdina EN, Kvarachelija NG, et al. Peripheral refraction: cause or effect of refraction development? Vestnik oftal’mologii. 2017;133(1):70-4. (in Russian) doi: 10.17116/oftalma2017133170-74.
  3. Romashchenko D, Rosén R, Lundström L. Peripheral refraction and higher order aberrations. Clin. Exp. Optom. 2020; 103(1):86-94. doi: 10.1111/cxo.12943.
  4. Chakraborty R, Ostrin LA, Benavente-Perez A, Verkicharla PK. Optical mechanisms regulating emmetropisation and refractive errors: evidence from animal models. Clin. Exp. Optom. 2020;103(1):55-67. doi: 10.1111/cxo.12991.
  5. Troilo D, Smith EL 3d, Nickla DL, et al. IMI — report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 2019;60(3):M31-88. doi: 10.1167/iovs.18-25967.
  6. Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica. 1971;163(4):209-15. doi: 10.1159/000306646.
  7. Mutti DO, Hayes JR, Mitchell GL, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest. Ophthalmol. Vis. Sci. 2007; 48(6):2510-9. doi: 10.1167/iovs.06-0562.
  8. Sng CC, Lin XY, Gazzard G, et al. Change in peripheral refraction over time in Singapore Chinese children. Invest. Ophthalmol. Vis. Sci. 2011;52(11):7880-7. doi: 10.1167/iovs.11-7290.
  9. Atchison DA, Li SM, Li H, et al. Relative peripheral hyperopia does not predict development and progression of myopia in children. Invest. Ophthalmol. Vis. Sci. 2015;56(10):6162-70. doi: 10.1167/iovs.15-17200.
  10. Wildsoet CF, Chia A, Cho P, et al. IMI - interventions myopia institute: interventions for controlling myopia onset and progression report. Invest. Ophthalmol. Vis. Sci. 2019;60(3):M106-31. doi: 10.1167/iovs.18-25958.
  11. Lam CS, Tang WC, Tse DY, et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br. J. Ophthalmol. 2020;104(3):363-8. doi: 10.1136/bjophthalmol-2018-313739.
  12. Tarutta EP, Tarasova NA, Milash SV, et al. The influence of different means of myopia correction on peripheral refraction depending on the direction of gaze. Vestnik oftal’mologii. 2019; 135(4):60-9. (in Russian) doi: 10.17116/oftalma201913504160.
  13. Young T. II. The Bakerian Lecture. On the mechanism of the eye. Philos. Trans. R. Soc. Lond. 1801;91:23-88. doi: 10.1098/rstl.1801.0004.
  14. Ogata D, Weymouth FW. Refractive differences in foveal and parafoveal vision. Am. J. Ophthalmol. 1918;1(9):630-44.
  15. Ferree CE, Rand G, Hardy C. Refraction for the peripheral field of vision. Arch. Ophthalmol. 1931;5(5):717-31.
  16. Ferree CE, Rand G, Hardy C. Refractive asymmetry in the temporal and nasal halves of the visual field. Am. J. Ophthalmol. 1932;15(6):513-22.
  17. Ferree CE, Rand G. Interpretation of refractive conditions in the peripheral field of vision: a further study. Arch. Ophthalmol. 1933;9(6):925-38.
  18. Millodot M. Effect of ametropia on peripheral refraction. Am. J. Optom. Physiol. Opt. 1981;58(9):691-5. doi: 10.1097/00006324-198109000-00001.
  19. Fedtke C, Ehrmann K, Holden BA. A review of peripheral refraction techniques. Optom. Vis. Sci. 2009;86(5):429-46. doi: 10.1097/opx.0b013e31819fa727.
  20. Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica. 1971;162(1):1-10. doi: 10.1159/000306229.
  21. Proskurina OV. Static and dynamic retinoscopy (skiascopy). Vestnik optometrii. 2012;(6):28-32. (in Russian)
  22. Leibowitz HW, Johnson CA, Isabelle E. Peripheral motion detection and refractive error. Science. 1972;177(4055):1207-8. doi: 10.1126/science.177.4055.1207.
  23. Hung LF, Ramamirtham R, Huang J, et al. Peripheral refraction in normal infant rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 2008;49(9):3747-57. doi: 10.1167/iovs.07-1493.
  24. Shen J, Spors F, Egan D, Liu C. Peripheral refraction and image blur in four meridians in emmetropes and myopes. Clin. Ophthalmol. 2018;12:345-58. doi: 10.2147/opth.s151288.
  25. Morrison AM, Mutti DO. Repeatability and validity of peripheral refraction with two different autorefractors. Optom. Vis. Sci. 2020;97(6):429-39. doi: 10.1097/opx.0000000000001520.
  26. Thibos LN. Principles of Hartmann-Shack aberrometry. J. Refract. Surg. 2000;16(5):S563-5.
  27. Seidemann A, Schaeffel F. Guirao A, et al. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J. Opt. Soc. Am. (A). 2002;19(23):63-73.
  28. Yamaguchi T, Ohnuma K, Konomi K, et al. Peripheral optical quality and myopia progression in children. Graefes Arch. Clin. Exp. Ophthalmol. 2013;251(10):2451-61. doi: 10.1007/s00417-013-2398-0.
  29. Tarutta EP, Iomdina EN, Kvaratskheliya NG. Method Studies of Peripheral Refraction. Patent RF №2367333; 2009. (in Russian)
  30. Queirós A, Amorim-de-Sousa A, Lopes-Ferreira D, et al. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis. (Lond). 2018;(5):12.
  31. Radhakrishnan H, Charman WN. Peripheral refraction measurement: does it matter if one turns the eye or the head? Ophthalmic. Physiol. Opt. 2008;28(1):73-82. doi: 10.1111/j.1475-1313.2007.00521.x.
  32. Moore KE, Berntsen DA. Central and peripheral autorefraction repeatability in normal eyes. Optom. Vis. Sci. 2014;91(9):1106-12. doi: 10.1097/opx.0000000000000351.
  33. Lee TT, Cho P. Repeatability of relative peripheral refraction in untreated and orthokeratology-treated eyes. Optom. Vis. Sci. 2012;89(10):1477-86. doi: 10.1097/opx.0b013e31826912cd.
  34. He JC. Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations. Ophthalmic Physiol. Opt. 2014;34(3):321-30. doi: 10.1111/opo.12127.
  35. Schmid GF, Petrig BL, Riva CE, et al. Measurement of eye length and eye shape by optical low coherence reflectometry. Int. Ophthalmol. 2001;23(4-6):317-20. doi: 10.1023/a:1014486126869.
  36. Tarutta EP, Milash SV, Tarasova NA, et al. Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry. Vestnik oftal’mologii. 2014;130(6):44-9. (in Russian)
  37. Koumbo Mekountchou IO, Conrad F, Sankaridurg P, Ehrmann K. Peripheral eye length measurement techniques: a review. Clin. Exp. Optom. 2020;103(2):138-47. doi: 10.1111/cxo.12892.
  38. Neroev VV, Tarutta EP, Khandzhyan AT, et al. Difference in profile of peripheral defocus after orthokeratology and eximer laser correction of myopia. Rossiiskii oftal’mologicheskii zhurnal. 2017;10(1):31-5. (in Russian)
  39. Tarutta EP, Milash SV, Tarasova NA, et al. Induced peripheral defocus and the shape of the posterior eye pole in orthokeratological myopia correction. Rossiiskii oftal’mologicheskii zhurnal. 2015;8(3):52-6. (in Russian)
  40. Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J. Cataract. Refract. Surg. 2011;37(3):513-7. doi: 10.1016/j.jcrs.2010.10.041.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».