Задача Валле Пуссена в ядре оператора свертки на полуплоскости


Цитировать

Полный текст

Аннотация

Рассматривается многоточечная задача Валле Пуссена (интерполяционная задача) на полуплоскости $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z<\alpha,$ $ \alpha>0\}$. Пусть $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$,~$\ldots \in D$ "--- положительные нулевые точки этой функции и их предел лежит на границе $D$. Предположим, что $\mu_k$ имеют кратность $s_k$, $k=1, 2, \dots$. Пусть $M_{\varphi}$ "--- оператор свертки с характеристической функцией $\varphi(z)$. Рассмотрим произвольную последовательность комплексных чисел $a_{kj},$ $j=0, 1, $ $\ldots, s_k-1$. Существует ли функция $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ такая, что $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? Предполагается, что характеристическая функция оператора имеет вполне регулярный рост. Получены условия разрешимости многоточечной задачи Валле Пуссена на полуплоскости. Также получены условия разрешимости поставленной задачи и на ограниченных выпуклых областях.

Об авторах

Валентин Васильевич Напалков

Институт математики с вычислительным центром Уфимского научного центра Российской академии наук

Email: shaig@anrb.ru
(д.ф.-м.н., проф., чл. корр. РАН; shaig@anrb.ru), директор института Россия, 450008, Уфа, ул. Чернышевского, 112

Карина Раисовна Зименс

Уфимский государственный авиационный технический университет

Email: karinazabirova@gmail.com
(karinazabirova@gmail.com; автор, ведущий переписку), аспирант, каф. специальных глав математики Россия, 450000, Уфа, ул. К. Маркса, 12

Список литературы

  1. Зименс К. Р., Напалков В. В. Интерполяционная задача для операторов свертки на выпуклых областях / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 181-182.
  2. de La Vallée Poussin Ch. J. Sur l'equation differentielle lineaire du second ordre. Deteremination d'une integrale par deux valeurs assignees. Extension aux equation d'ordre n // J. Math. pures et appl., 1929. vol. 8, no. 2. pp. 125-144 (In French).
  3. Shapiro H. S. An Algebraic Theorem of E. Fischer, and the Holomorphic Goursat Problem // Bull. London Math. Soc., 1989. vol. 21, no. 6. pp. 513-537. doi: 10.1112/blms/21.6.513.
  4. Напалков В. В. Комплексный анализ и задача Коши для операторов свертки / Аналитические и геометрические вопросы комплексного анализа: Сборник статей. К 70летию со дня рождения академика Анатолия Георгиевича Витушкина / Тр. МИАН, Т. 235. М.: Наука, 2001. С. 165-168.
  5. Напалков В. В., Нуятов А. А. Многоточечная задача Валле Пуссена для операторов свертки // Матем. сб., 2012. Т. 203, № 2. С. 77-86. doi: 10.4213/sm7763.
  6. Мерзляков С. Г., Попенов С. В. Кратная интерполяция рядами экспонент в H(C) с узлами на вещественной оси // Уфимск. матем. журн., 2013. Т. 5, № 3. С. 130-143.
  7. Забирова К. Р., Напалков В. В. Операторы свёртки Данкла и многоточечная задача Валле-Пуссена // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 1(30). С. 70-81. doi: 10.14498/vsgtu1139.
  8. Напалков В. В., Муллабаева А. У. Об одном классе дифференциальных операторов и их применении / Тр. ИММ УрО РАН, Т. 20, 2014. С. 201-214.
  9. Левин Б. Я. Распределение корней целых функций. М.: ГИТТЛ, 1956. 632 с.
  10. Хермандер Л. Введение в теорию функций нескольких комплексных переменных. М.: Мир, 1968. 280 с.
  11. Леонтьев А. Ф. Целые функции. Ряды экспонент. М.: Наука, 1989. 176 с.
  12. Ткаченко В. А. Спектральная теория в пространствах аналитических функционалов для операторов, порождаемых умножением на независимую переменную // Матем. сб., 1980. Т. 112(154), № 3(7). С. 421-466.
  13. В. В. Напалков Об одном классе неоднородных уравнений типа свертки // УМН, 1974. Т. 29, № 3(177). С. 217-218.
  14. Von Muggli H. Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten // Comment. Math. Helv., 1938. vol. 11, no. 1. pp. 151-156. doi: 10.1007/BF01199696.
  15. Dieudonné J., Schwartz L. La dualité dans les espaces (F ) et (L F ) // Ann. Inst. Fourier Grenoble, 1949. vol. 1. pp. 61-101 (In French).
  16. Епифанов О. В. О существовании непрерывного правого обратного в одном классе локально выпуклых пространств // Изв. Сев.-Кавк. научн. центра высш. шк., Сер. естеств. науки, 1991. № 3(75). С. 3-4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».