Modeling of viscoelastoplastic deformation of flexible shallow shells with spatial-reinforcements structures

Cover Page

Cite item

Full Text

Abstract

Based on the procedure of time steps, a mathematical model of the viscoelastoplastic behavior of shallow shells with spatial reinforcement structures is constructed. Plastic deformation of the components of the composition is described by flow theory with isotropic hardening; viscoelastic deformation by the equations of the Maxwell–Boltzmann model. The possible weakened resistance of composite curved panels to transverse shear is taken into account in the framework of the hypotheses of Reddy's theory, and the geometric nonlinearity of the problem is taken into account in the Karman approximation. The solution of the formulated initial-boundary value problem is constructed using an explicit numerical scheme of the “cross” type. The elastoplastic and viscoelastoplastic flexural dynamic behavior of “flat” and spatially reinforced fiberglass cylindrical panels under the action of explosive loads has been investigated. Using the example of relatively thin composite structures, it is shown that, depending on which of the front surface (convex or concave), a load is applied, replacing the traditional “flat” reinforcement structure with a spatial one can lead to both an increase and a decrease in the residual deflection. However, in both cases, such a replacement can significantly reduce the intensity of residual deformations of the binder material and fibers of some families. It was demonstrated that the amplitudes of oscillations of curved composite panels in the neighborhood of the initial moment of time significantly exceed the maximum absolute values of the residual deflections. In this case, the residual deflections are rather complicated. It is shown that the calculations carried out within the framework of the elastoplastic deformation theory of the composition components do not even allow an approximate the magnitude determination of the residual deformations of the materials making up the composition.

About the authors

Andrei Petrovich Yankovskii

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: shulgin@itam.nsc.ru, nemirov@itam.nsc.ru, yankee65@list.ru, lab4nemir@rambler.ru
Doctor of physico-mathematical sciences

References

  1. Qatu M. S., Sullivan R. W., Wang W., "Recent research advances on the dynamic analysis of composite shells: 2000–2009", Compos. Struct., 93:1 (2010), 14-31
  2. Kazanci Z., "Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses", Int. J. Nonlin. Mech., 46:5 (2011), 807-817
  3. Gill S. K., Gupta M., Satsangi P., "Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites", Front. Mech. Eng., 8:2 (2013), 187-200
  4. Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Amsterdam, Elsever, 2013, xii+412 pp.
  5. Соломонов Ю. С., Георгиевский В. П., Недбай А. Я., Андрюшин В. А., Прикладные задачи механики композитных цилиндрических оболочек, Физматлит, М., 2014, 408 с.
  6. Gibson R. F., Principles of Composite Material Mechanics, CRC Press, Boca Raton, 2016
  7. Малмейстер А. К., Тамуж В. П., Тетерс Г. А., Сопротивление жестких полимерных материалов, Зинатне, Рига, 1972, 500 с.
  8. Амбарцумян С. А., Теория анизотропных пластин. Прочность, устойчивость и колебания, Наука, М., 1987, 360 с.
  9. Богданович А. Е., Нелинейные задачи динамики цилиндрических композитных оболочек, Зинатне, Рига, 1987, 295 с.
  10. Абросимов Н. А., Баженов В. Г., Нелинейные задачи динамики композитных конструкций, Изд-во ННГУ, Н. Новгород, 2002, 400 с.
  11. Reddy J. N., Mechanics of laminated composite plates. Theory and analysis, CRC Press, Boca Raton, 2004, xxiii+831 pp.
  12. Каледин В. О., Аульченко С. М., Миткевич А. Б. и др., Моделирование статики и динамики оболочечных конструкций из композиционных материалов, Физматлит, М., 2014, 196 с.
  13. Янковский А. П., "Моделирование динамического упругопластического поведения гибких армированных пологих оболочек", Конструкции из композиционных материалов, 2018, № 2, 3-14
  14. Жигун И. Г., Душин М. И., Поляков В. А., Якушин В. А., "Композиционные материалы, армированные системой прямых взаимно ортогональных волокон. 2. Экспериментальное изучение", Механика полимеров, 1973, № 6, 1011-1018
  15. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А., Пространственно-армированные композиционные материалы: Справочник, Машиностроение, М., 1987, 224 с.
  16. Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., "A new generation of 3D woven fabric preforms and composites", Sampe J., 37:3 (2001), 3-17
  17. Schuster J., Heider D., Sharp K., Glowania M., "Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites", Mech. Compos. Mater., 45:2 (2009), 241-254
  18. Тарнопольский Ю. М., Поляков В. А., Жигун И. Г., "Композиционные материалы, армированные системой прямых взаимно ортогональных волокон. 1. Расчет упругих характеристик", Механика полимеров, 1973, № 5, 853-860
  19. Крегерс А. Ф., Тетерс Г. А., "Структурная модель деформирования анизотропных, пространственно армированных композитов", Мех. композ. матер., 1982, № 1, 14-22
  20. Янковский А. П., "Определение термоупругих характеристик пространственно армированных волокнистых сред при общей анизотропии материалов компонент композиции. 1. Структурная модель", Мех. композ. матер., 46:5 (2010), 663-678
  21. Янковский А. П., "Упругопластическое деформирование гибких пластин с пространственными структурами армирования", ПМТФ, 59:6 (2018), 112-122
  22. Писаренко Г. С., Яковлев А. П., Матвеев В. В., Вибропоглощающие свойства конструкционных материалов: Справочник, Наукова думка, Киев, 1971, 375 с.
  23. Freudenthal A. M., Geiringer H., "The Mathematical Theories of the Inelastic Continuum", Elasticity and Plasticity. Encyclopedia of Physics, ed. S. Flügge, Springer, Berlin, Heidelberg, 1958, 229-433
  24. Reissner E., "On transverse vibrations of thin, shallow elastic shells", Quart. Appl. Math., 13:2 (1955), 169-176
  25. Houlston R., DesRochers C. G., "Nonlinear structural response of ship panels subjected to air blast loading", Comput. Struct., 26:1-2 (1987), 1-15
  26. Zeinkiewicz O. C., Taylor R. L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000, 707 pp.
  27. Dekker K., Verwer J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North‐Holland, Amsterdam, New York, 1984, x+308 pp.
  28. Хажинский Г. М., Модели деформирования и разрушения металлов, Научный мир, М., 2011, 231 с.
  29. Янковский А. П., "Применение явного по времени метода центральных разностей для численного моделирования динамического поведения упругопластических гибких армированных пластин", Вычисл. мех. сплош. сред, 9:3 (2016), 279-297
  30. Handbook of composites, ed. G. Lubin, Van Nostrand Reinhold Company Inc., New York, 1982, 786 pp.
  31. Композиционные материалы: Справочник, ред. Д. М. Карпинос, Наукова думка, Киев, 1985, 592 с.
  32. Qatu M. S., Sullivan R. W., Wang W., "Recent research advances on the dynamic analysis of composite shells: 2000–2009", Compos. Struct., 93:1 (2010), 14-31
  33. Kazanci Z., "Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses", Int. J. Nonlin. Mech., 46:5 (2011), 807-817
  34. Gill S. K., Gupta M., Satsangi P., "Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites", Front. Mech. Eng., 8:2 (2013), 187-200
  35. Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Amsterdam, Elsever, 2013, xii+412 pp.
  36. Соломонов Ю. С., Георгиевский В. П., Недбай А. Я., Андрюшин В. А., Прикладные задачи механики композитных цилиндрических оболочек, Физматлит, М., 2014, 408 с.
  37. Gibson R. F., Principles of Composite Material Mechanics, CRC Press, Boca Raton, 2016
  38. Малмейстер А. К., Тамуж В. П., Тетерс Г. А., Сопротивление жестких полимерных материалов, Зинатне, Рига, 1972, 500 с.
  39. Амбарцумян С. А., Теория анизотропных пластин. Прочность, устойчивость и колебания, Наука, М., 1987, 360 с.
  40. Богданович А. Е., Нелинейные задачи динамики цилиндрических композитных оболочек, Зинатне, Рига, 1987, 295 с.
  41. Абросимов Н. А., Баженов В. Г., Нелинейные задачи динамики композитных конструкций, Изд-во ННГУ, Н. Новгород, 2002, 400 с.
  42. Reddy J. N., Mechanics of laminated composite plates. Theory and analysis, CRC Press, Boca Raton, 2004, xxiii+831 pp.
  43. Каледин В. О., Аульченко С. М., Миткевич А. Б. и др., Моделирование статики и динамики оболочечных конструкций из композиционных материалов, Физматлит, М., 2014, 196 с.
  44. Янковский А. П., "Моделирование динамического упругопластического поведения гибких армированных пологих оболочек", Конструкции из композиционных материалов, 2018, № 2, 3-14
  45. Жигун И. Г., Душин М. И., Поляков В. А., Якушин В. А., "Композиционные материалы, армированные системой прямых взаимно ортогональных волокон. 2. Экспериментальное изучение", Механика полимеров, 1973, № 6, 1011-1018
  46. Тарнопольский Ю. М., Жигун И. Г., Поляков В. А., Пространственно-армированные композиционные материалы: Справочник, Машиностроение, М., 1987, 224 с.
  47. Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., "A new generation of 3D woven fabric preforms and composites", Sampe J., 37:3 (2001), 3-17
  48. Schuster J., Heider D., Sharp K., Glowania M., "Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites", Mech. Compos. Mater., 45:2 (2009), 241-254
  49. Тарнопольский Ю. М., Поляков В. А., Жигун И. Г., "Композиционные материалы, армированные системой прямых взаимно ортогональных волокон. 1. Расчет упругих характеристик", Механика полимеров, 1973, № 5, 853-860
  50. Крегерс А. Ф., Тетерс Г. А., "Структурная модель деформирования анизотропных, пространственно армированных композитов", Мех. композ. матер., 1982, № 1, 14-22
  51. Янковский А. П., "Определение термоупругих характеристик пространственно армированных волокнистых сред при общей анизотропии материалов компонент композиции. 1. Структурная модель", Мех. композ. матер., 46:5 (2010), 663-678
  52. Янковский А. П., "Упругопластическое деформирование гибких пластин с пространственными структурами армирования", ПМТФ, 59:6 (2018), 112-122
  53. Писаренко Г. С., Яковлев А. П., Матвеев В. В., Вибропоглощающие свойства конструкционных материалов: Справочник, Наукова думка, Киев, 1971, 375 с.
  54. Freudenthal A. M., Geiringer H., "The Mathematical Theories of the Inelastic Continuum", Elasticity and Plasticity. Encyclopedia of Physics, ed. S. Flügge, Springer, Berlin, Heidelberg, 1958, 229-433
  55. Reissner E., "On transverse vibrations of thin, shallow elastic shells", Quart. Appl. Math., 13:2 (1955), 169-176
  56. Houlston R., DesRochers C. G., "Nonlinear structural response of ship panels subjected to air blast loading", Comput. Struct., 26:1-2 (1987), 1-15
  57. Zeinkiewicz O. C., Taylor R. L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000, 707 pp.
  58. Dekker K., Verwer J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, New York, 1984, x+308 pp.
  59. Хажинский Г. М., Модели деформирования и разрушения металлов, Научный мир, М., 2011, 231 с.
  60. Янковский А. П., "Применение явного по времени метода центральных разностей для численного моделирования динамического поведения упругопластических гибких армированных пластин", Вычисл. мех. сплош. сред, 9:3 (2016), 279-297
  61. Handbook of composites, ed. G. Lubin, Van Nostrand Reinhold Company Inc., New York, 1982, 786 pp.
  62. Композиционные материалы: Справочник, ред. Д. М. Карпинос, Наукова думка, Киев, 1985, 592 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».