Modeling the perturbation zone of a rarefied multicomponent low-temperature plasma by a stationary symmetric body
- Authors: Cherepanov V.V.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Issue: Vol 29, No 3 (2025)
- Pages: 516-537
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://bakhtiniada.ru/1991-8615/article/view/349686
- DOI: https://doi.org/10.14498/vsgtu2153
- EDN: https://elibrary.ru/NKWWTP
- ID: 349686
Cite item
Full Text
Abstract
The paper present a mathematical model of self-consistent relaxation in a perturbed region, based on the nonlinear Vlasov–Poisson system, which describes the interaction of a stationary absorbing charged conductor (of spherical or cylindrical geometry) with a free-molecular multicomponent low-temperature plasma. The high dimensionality of kinetic equations posed significant challenges for numerical implementation. To overcome these, we developed a system of curvilinear coordinates with nonholonomic constraints that reduces the phase volume of the problem; the derivation of the kinetic equation form in this coordinate system is provided. The employed numerical simulation method is described in detail.
The obtained results not only validate the adequacy of the proposed model and the correctness of numerical algorithms implementation, but also demonstrate substantial practical relevance. The kinetic nature of the model enables detailed investigation of plasma state and self-consistent electric field in the near-surface region. Specifically, for the case of a spherical body in three-component plasma, we demonstrate significant nonequilibrium in particle distribution within the perturbed zone and reveal characteristic features of spatial distribution and dynamics for particles with different charge signs.
Full Text
##article.viewOnOriginalSite##About the authors
Valery V. Cherepanov
Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: vvcherepanov@yandex.ru
ORCID iD: 0000-0003-2733-752X
SPIN-code: 3740-3292
Scopus Author ID: 14419630000
ResearcherId: R-7589-2016
https://www.mathnet.ru/rus/person63230
Dr. Tech. Sci., Associate Professor; Professor; Dept. of Physics
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4References
- Morfill G. E., Ivlev A. V. Complex plasmas: An interdisciplinary research field, Rev. Mod. Phys., 2009, vol. 81, no. 4, pp. 1353–1404. EDN: MYCKIN. DOI: https://doi.org/10.1103/RevModPhys.81.1353.
- Kuznetsov I. A., Saveliev A. A., Rasipuram S., et al. Development of active porous medium filters on plasma textiles, AIP Conf. Proc., 2012, vol. 1453, pp. 265–270. DOI: https://doi.org/10.1063/1.4711186.
- Giddey S., Badwal S. P. S., Kulkarni A., Munnings C. A. A comprehensive review of direct carbon fuel cell technology, Prog. Energy Combust. Sci., 2012, vol. 38, no. 3, pp. 360–399. DOI: https://doi.org/10.1016/j.pecs.2012.01.003.
- Thissen H. Plasma-based surface modification for the control of biointerfacial interactions, In: Biosynthetic Polymers for Medical Applications, Woodhead Publishing Series in Biomaterials; eds. L. Poole-Warren, P. Martens, R. Green. Amsterdam, Elsevier, 2016, pp. 129–144. DOI: https://doi.org/10.1016/B978-1-78242-105-4.00005-5.
- Gay-Mimbrera J., Garcia M. C., Isla-Tejera B., et al. Clinical and biological principles of cold atmospheric plasma application in skin cancer, Adv. Ther., 2016, vol. 33, no. 6, pp. 894–909. DOI: https://doi.org/10.1007/s12325-016-0338-1.
- Fayrushin I. I., Dautov I. G., Kashapov N. F. Distribution of potential and concentration of electrons in low-temperature plasma with hollow microparticles, Int. J. Env. Sci. Technol., 2017, vol. 14, pp. 2555–2560. EDN: XNOAWS. DOI: https://doi.org/10.1007/s13762-016-1054-8.
- Bronold F. X.,Rasek K., Fehske H. Electron microphysics at plasma-solid interfaces, J. Appl. Phys., 2020, vol. 128, 180908, arXiv: 2011.06821 [physics.plasm-ph]. DOI: https://doi.org/10.1063/5.0027406.
- Freidman P. C., Fridman A. Using cold plasma to treat warts in children: A case series, Pediatr. Dermatol., 2020, vol. 37, no. 4, pp. 706–709. DOI: https://doi.org/10.1111/pde.14180.
- Kozhevnikov V. Yu., Kozirev A. V., Kokovin A. O., Semeniuk N. S. Kinetic model of vacuum plasma expansion in a cylindrical gap, Plasma Phys. Rep., 2023, vol. 49, no. 11, pp. 1350–1357. EDN: TEDTAW. DOI: https://doi.org/10.1134/s1063780x23601256.
- Adamovich I., Agarwal S., Ahedo E., et al. The 2022 Plasma Roadmap: low temperature plasma science and technology, J. Phys. D: Appl. Phys., 2022, vol. 55, no. 37, 373001. DOI: https://doi.org/10.1088/1361-6463/ac5e1c.
- Sanmartin J. R., Estes R. D. The orbital-motion-limited regime of cylindrical Langmuir probes, Phys. Plasm., 1999, vol. 6, no. 1, pp. 395–405. DOI: https://doi.org/10.1063/1.873293.
- Merlino R. L. Experimental investigations of dusty plasmas, AIP Conf. Proc., 2005, vol. 799, pp. 3–11. DOI: https://doi.org/10.1063/1.2134567.
- Thomas E. Dust clouds in DC-generated dusty plasmas: Transport, waves, and three-dimensional effects, Contr. Plasm. Phys., 2009, vol. 49, no. 4–5, pp. 316–345. DOI: https://doi.org/10.1002/ctpp.200910029.
- Chung S. S. M. FDTD simulations on radar cross section of metal cone and plasma covered metal cone, Vacuum, 2012, vol. 86, no. 7, pp. 970–984. DOI: https://doi.org/10.1016/j.vacuum.2011.08.016.
- Lev D., Myers R. M., Lemmer K. M., et al. The technological and commercial expansion of electric propulsion, Acta Astro., 2019, vol. 159, pp. 213–227. DOI: https://doi.org/10.1016/j.actaastro.2019.03.058.
- Timofeev A. V., Nikolaev V. S. Effect of glow discharge parameters on the mean inter-particle distance in dusty plasma structures in the cryogenic-room temperature range, J. Exp. Theor. Phys., 2019, vol. 128, pp. 312–322. EDN: XHPLLW. DOI: https://doi.org/10.1134/s1063776119010175.
- Ohkawa Y., Kawamoto S., Okumura T., et al. Review of KITE – Electrodynamic tender experiment on the Japanese H-II Transfer Vehicle, Acta Astro., 2020, vol. 177, pp. 750–758. DOI: https://doi.org/10.1016/j.actaastro.2020.03.014.
- Golub A. P., Popel S. I. Non-stationary processes during the formation of dusty plasma at the surface of Deimos, the satellite of Mars, Plasma Phys. Rep., 2021, vol. 47, no. 8, pp. 826–831. EDN: TYOEJP. DOI: https://doi.org/10.1134/S1063780X21070084.
- Vaulina O. S. Redistribution of kinetic energy in three-dimensional clouds of charged dust grains, Plasma Phys. Rep., 2022, vol. 48, no. 1, pp. 33–36. EDN: OIYFLV. DOI: https://doi.org/10.1134/S1063780X22010123.
- Ignatov A. M. Effect of nonreciprocal forces on the stability of dust clusters, Plasma Phys. Rep., 2021, vol. 47, no. 5, pp. 410–418. EDN: EPHPXO. DOI: https://doi.org/10.1134/S1063780X21050020.
- Popel S. I., Zelenyi L. M., Zakharov A. V. Dusty plasma in the solar system: Celestial bodies without atmosphere, Plasma Phys. Rep., 2023, vol. 49, no. 8, pp. 1006–1013. EDN: DMNBYE. DOI: https://doi.org/10.1134/s1063780x23600780.
- Hartzell C. M., Bellan P., Bodewits D., et al. Payload concepts for investigations of electrostatic dust mothion on the lunar surface, Acta Astro., 2023, vol. 207, pp. 89–105. DOI: https://doi.org/10.1016/j.actaastro.2023.02.032.
- Chapman S., Cowling T. G. The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge, Cambridge Univ., 1991, 423 pp.
- Silin V. P. Vvedeniye v kineticheskuyu teoriyu gazov [Introduction to Kinetic Theory of Gases]. Moscow, Nauka, 1971, 338 pp. (In Russian)
- Ecker G. Theory of Fully Ionized Plasmas. New York, London, Academic Press, 1972, xv+344 pp. DOI: https://doi.org/10.1016/C2013-0-10607-1.
- Artsimovich A. A., Sagdeev R. Z. Fizika plazmy dlya fizikov [Plasma Physics for Physicists]. Moscow, Atomizdat, 1979, 320 pp. (In Russian)
- Alpert Ya. L., Gurevich A. V., Pitaevskii L. P. Iskusstvennye sputniki v razrezhennoi plazme [Artificial Satellites in Rarefied Plasma]. Moscow, Nauka, 1964, 382 pp. (In Russian). EDN: ZTCPTT.
- Al’pert Ya. L. Volny i iskusstvennye tela v prizemnoi plazme [Waves and Artificial Bodies in Near-Earth Plasma]. Moscow, Nauka, 1974, 216 pp. (In Russian)
- Alekseev B. V., Kotelnikov V. A., Cherepanov V. V. Electrostatic probe in multicomponent plasma, Teplofiz. Vys. Temp., 1984, vol. 22, no. 2, pp. 395–396 (In Russian).
- Zhdanov S. K., Kurnaev V. A., Romanovskii M. K., Tsvetkov I. V. Osnovy fizicheskikh protsessov v plazme i plazmennykh ustanovkakh [Fundamentals of Physical Processes in Plasma and Plasma Devices]. Moscow, MEPhI, 2007, 368 pp. (In Russian)
- Vlasov A. A. The vibrational properties of an electron gas, Sov. Phys. Usp., 1968, vol. 10, no. 6, pp. 721–733. DOI: https://doi.org/10.1070/PU1968v010n06ABEH003709.
- Pegoraro F., Califano F., Manfredi G., Morrison P. J. Theory and applications of the Vlasov equation, Eur. Phys. J. D, 2015, vol. 69, 68. DOI: https://doi.org/10.1140/epjd/e2015-60082-y.
- Vedenyapin V. V., Kogtenev D. A. On Derivation and Properties of Vlasov-Type Equations, Keldysh Institute preprints, 2023, 020 (In Russian). DOI: https://doi.org/10.20948/prepr-2023-20.
- Skubachevskii A. L. Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field, Russ. Math. Surv., 2014, vol. 69, no. 2, pp. 291–330. EDN: UELRWZ. DOI: https://doi.org/10.1070/RM2014v069n02ABEH004889.
- Vlasov A. A. Statisticheskie funktsii raspredeleniia [Statistical Distribution Functions]. Moscow, Nauka, 1966, 356 pp. (In Russian)
- Godunov S. K., Ryaben’kii V. S. Raznostnye skhemy. Vvedenie v teoriiu [Difference Schemes: Introduction to the Theory]. Moscow, Nauka, 1977, 400 pp. (In Russian)
- Potter D. Computational Physics. London, John Wiley & Sons, 1973, xi+304 pp.
- Hockney R. W., Eastwood J. W. Computer Simulation Using Particles. Bristol, Philadelphia, Adam Hilger, 1988, xxi+540 pp. DOI: https://doi.org/10.1201/9780367806934.
- Alifanov O. M., Cherepanov V. V. Metody issledovaniya i prognozirovaniya svoistv vysokoporistykh teplozashchitnykh materialov [Methods for Studying and Predicting Properties of Highly Porous Thermal Protection Materials]. Moscow, Moscow Aviation Inst., 2014, 264 pp. (In Russian)
- Cherepanov V. V. On the solution of some nonlinear elliptic equation for thermal applications, Tepl. Protsessy Tekhn., 2024, vol. 16, no. 2, pp. 55–67 (In Russian). EDN: CSHXIN.
Supplementary files





