Network of Sobolev spaces and boundary value problems for operators vortex and gradient of divergence
- Authors: Saks R.S1
-
Affiliations:
- Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
- Issue: Vol 27, No 1 (2023)
- Pages: 23-49
- Section: Differential Equations and Mathematical Physics
- URL: https://bakhtiniada.ru/1991-8615/article/view/145888
- DOI: https://doi.org/10.14498/vsgtu1961
- ID: 145888
Cite item
Full Text
Abstract
We will consider the scale of the Sobolev spaces vector fields in a bounded domain G of with a smooth boundary of . The gradient-ofdivergence and the rotor-of-rotor operators ( and ) and their powers are analogous to the scalar operator in . They generate spaces and potential and vortex fields; where the numbers k, m > 0 are integers.
It is proven that and are projections of Sobolev spaces and in subspaces and in . Their direct sums form a network of spaces. Its elements are classes .
We consider at the properties of the spaces and and proved their compliance with the spaces and . We also consider at the direct sums of for any integer numbers k and m>0. This completes the construction of the network.
In addition, an orthonormal basis has been constructed in the space . It consists of the orthogonal subspace and bases. Its elements are eigenfields of the operators and . The proof of their smoothness is an important stage in the theory developed.
The model boundary value problems for the operators , , their sum, and also for the Stokes operator have been investigated in the network . Solvability conditions are obtained for the model problems considered.
About the authors
Romen S Saks
Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Author for correspondence.
Email: romen-saks@yandex.ru
Scopus Author ID: 22981362000
http://www.mathnet.ru/person23104
Dr. Phys. & Math. Sci.; Professor
Russian Federation, 450077, Ufa, Chernyshevskiy st., 112.References
- Sobolev S. L. Cubature Formulas and Modern Analysis: An introduction. Montreux, Gordon and Breach Science Publ., 1992, xvi+379 pp.
- Mikhailov V. P. Partial Differential Equations. Moscow, Mir, 1978, 397 pp.
- Solonnikov V. A., Ural’tseva N. N. Sobolev spaces, In: Izbrannye glavy analiza i vysshei algebry [Selected Chapters of Analysis and Higher Algebra]. Leningrad, Leningrad State Univ., 1981, 129–196 pp. (In Russian)
- Weyl H. The method of orthogonal projection in potential theory, Duke Math. J., 1940, vol. 7, no. 1, pp. 411–444. DOI: https://doi.org/10.1215/S0012-7094-40-00725-6.
- Sobolev S. L. On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat., 1954, vol. 18, no. 1, pp. 3–50 (In Russian).
- Yoshida Z., Giga Y. Remarks on spectra of operator rot, Math. Z., 1990, vol. 204, pp. 235–245. DOI: https://doi.org/10.1007/BF02570870.
- Borchers W., Sohr H. On the equations div u = f and rot v = g with zero boundary conditions, Hokkaido Math. J., 1990, vol. 19, no. 1, pp. 67–87. DOI: https://doi.org/10.14492/hokmj/1381517172.
- R. S. Saks The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), pp. 131–146 (In Russian). EDN: RAVQHN. DOI: https://doi.org/10.14498/vsgtu1166.
- Ladyzhenskaya O. A. The Mathematical Theory of Viscous Incompressible Flows. New York, Gordon and Breach, 1969, xviii+224 pp.
- Fridrichs K. Differertial form on Riemannian manifolds, Comm. Pure Appl. Math., 1955, vol. 8, no. 4, pp. 551–590. DOI: https://doi.org/10.1002/cpa.3160080408.
- Kochin N. E., Kibel’ I. A., Roze N.V. Teoreticheskaia gidromekhanika. Ch. 2 [Theoretical Hydromechanics, Vol. 2]. Moscow, Fizmatgiz, 1963, 728 pp. (In Russian)
- Bykhovskii É. B., Smirnov N. V. Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis, In: Mathematical problems of hydrodynamics and magnetohydrodynamics for a viscous incompressible fluid, Collected papers, Trudy Mat. Inst. Steklov., 59. Moscow–Leningrad, Acad. Sci. USSR, 1960, pp. 5–36 (In Russian).
- Morrey C. B. Multiple Integrals in the Calculus of Variations, Classics in Mathematics. Berlin, Heidelberg, New York, Springer, 1966, xi+506 pp. DOI: https://doi.org/10.1007/978-3-540-69952-1.
- Schwartz L. Kompleksnye mnogoobraziia. Ellipticheskie uravneniia s chastnymi proizvodnymi [Complex Analytic Manifolds. Elliptic Partial Differential Equations]. Moscow, Mir, 1964, 212 pp. (In Russian)
- Volevich L. R. Solubility of boundary value problems for general elliptic systems, Mat. Sb. (N.S.), 1965, vol. 68(110), no. 3, pp. 373–416 (In Russian).
- Solonnikov V. A. Overdetermined elliptic boundary value problems, In: Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21. Leningrad, “Nauka”, Leningrad. Otdel., 1971, pp. 112–158 (In Russian).
- Saks R. S. Boundary-value problems for elliptic systems of differential equations. Novosibirsk, Novosibirsk State Univ., 1975, 162 pp. (In Russian)
- Temam R. I. Navier–Stokes Equations: Theory and Numerical Analysis. Amsterdam, North-Holland, 1984. DOI: https://doi.org/10.1090/chel/343.
- Zorich V. A. Mathematical analysis II. Berlin, Springer, 2016, xx+720 pp.
- Vainberg B. R., Grushin V. V. Uniformly nonelliptic problems. I, Math. USSR-Sb., 1967, vol. 1, no. 4, pp. 543–568. DOI: https://doi.org/10.1070/SM1967v001n04ABEH001999.
- Saks R. S. Sobolev spaces and boundary-value problems for the curl and gradient-ofdivergence operators, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 2, pp. 249–274 (In Russian). EDN: FTOOME. DOI: https://doi.org/10.14498/vsgtu1759.
- Saks R. S. Operator ∇div and Sobolev spaces, Dinamicheskie Sistemy, 2018, vol. 8, no. 4, pp. 385–407 (In Russian). EDN: YWAJED.
- Vladimirov V. S. Equations of Mathematical Physics. New York, Marcel Dekker, 1971.
- Saks R. S. Solving of spectral problems for curl and Stokes operators, Ufa Math. J., 2013, vol. 5, no. 2, pp. 63–81. DOI: https://doi.org/10.13108/2013-5-2-63.
- Woltjer L. A theorem on force-free magnetic fields, Proc. Nat. Acad. Sci., 1958, vol. 44, pp. 489-491. DOI: https://doi.org/10.1073/pnas.44.6.489.
- Cantarella J., DeTurck D., Gluck H., Teytel M. The spectrum of the curl operator on spherically symmetric domains, Physics of Plasmas, 2000, vol. 7, pp. 2766–2775. DOI: https://doi.org/10.1063/1.874127.
- Woltjer L. The Crab Nebula, Bull. Astron. Inst. Netherlands, 1958, vol. 14, pp. 39–80.
- Islamov G. G. On a class of vector fields, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, vol. 19, no. 4, pp. 680–696 (In Russian). EDN: VQDCOD. DOI: https://doi.org/10.14498/vsgtu1382.
- Chandrasekhar S., Kendall P. C. On force-free magnetic fields, Astrophys. J., 1957, vol. 126, pp. 457–460. DOI: https://doi.org/10.1086/146413.
- Montgomery D., Turner L., Vahala G. Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry, Phys. Fluids., 1978, vol. 21, no. 5, pp. 757–764. DOI: https://doi.org/10.1063/1.862295.
- Saks R. S., Islamov G. G. Eigenfunctions of the curl operator in L2(G), In: Actual Problems in Theory of Partial Differential Equations dedicated to the centenary of Andrey V. Bitzadze, Abstracts (Russia, 16–18 June, 2016). Moscow, Moscow State Univ., 2016, pp. 21–23.
Supplementary files
