

УДК 519.83

ЗАДАЧА СТИМУЛИРОВАНИЯ В РЕФЛЕКСИВНОЙ ИГРЕ С ТОЧЕЧНОЙ СТРУКТУРОЙ ИНФОРМИРОВАННОСТИ

И. В. Петров*, А. Г. Чхартишвили**

Институт проблем управления им. В.А. Трапезникова РАН, г. Москва

*⊠ ivpetrov@ipu.ru, **⊠ sandro_ch@mail.ru

Аннотация. Рассмотрена модель коллективного поведения агентов в ситуации игровой неопределенности и неполной информированности. В качестве модели принятия решений агентами используется рефлексивная игра, в которой участники принимают решение на основе иерархии представлений о параметрах игры, представлений о представлениях и т. д. В центре внимания данной работы — рефлексивные игры с точечной структурой информированности и линейным наилучшим ответом игроков. Показано, что информационное равновесие в таких играх аналогично равновесию Нэша в игре на сети; в явном виде записаны выражения для равновесных ответов игроков, указаны условия существования и единственности равновесия. Приводится формулировка задачи стимулирования, аналогичной задаче стимулирования в игре на сети: показана взаимосвязь между равновесием в игре с общим знанием и равновесием в игре с неполной информированностью, в которой центр сообщает новые стимулы игрокам индивидуально.

Ключевые слова: рефлексивные игры, информационное равновесие, игры на сетях, сетевое управление.

ВВЕДЕНИЕ

Информационная рефлексия – процесс и результат размышлений агента о том, каковы значения неопределенных параметров, что об этих значениях знают и думают его оппоненты (другие агенты) [1]. Информационная рефлексия обычно связана с недостаточной взаимной информированностью, и ее результат используется при принятии решений. Одним из способов моделирования принятия решения в ситуации с неполной информированностью являются рефлексивные игры, в которых представления агентов друг о друге формализованы в виде фантомных агентов. Введение понятия фантомного агента позволяет определить рефлексивную игру как игру реальных и фантомных агентов, а также определить информационное равновесие как обобщение равновесия Нэша на случай рефлексивной игры, в рамках которого предполагается, что каждый агент (как реальный, так и фантомный) при вычислении своего субъективного равновесия (равновесия в той игре, в которую

он со своей точки зрения играет) использует имеющуюся у него иерархию представлений об объективной и рефлексивной реальности.

Удобным инструментом исследования концепции решения рефлексивной игры — информационного равновесия — является граф рефлексивной игры, в котором вершины соответствуют реальным и фантомным агентам, а в каждую вершину-агента входят дуги (их число на единицу меньше числа реальных агентов), идущие из вершин-агентов, от действий которых в субъективном равновесии зависит выигрыш данного агента. Ниже на примере рефлексивной игры с точечной структурой показано, что в отдельных случаях, а именно в случаях, когда наилучшие ответы игроков линейно зависят от ответов других связанных с ними агентов, информационное равновесие может быть описано в явном виде в терминах структуры информированности.

Для класса игр с линейным наилучшим ответом ранее [2] была сформулирована задача управления стимулами агентов (англ. *incentive targeting problem*) — случай задачи центра, изменяющего значе-

ние параметра функции полезности агентов, являющийся их предельным выигрышем и не зависящий от действий других агентов. В случае рефлексивной игры с точечной структурой информированности изменение данного параметра возможно двумя способами, каждый из которых может быть реализован различными методами: единовременное сообщение нового параметра всем агентам (что эквивалентно решению исходной задачи стимулирования) либо ситуация, в которой о значении нового параметра узнает лишь часть агентов. В данной работе приведен пример механизма сообщения информации центром, когда обе эти ситуации – случай общего знания и случай неполной информированности агентов – дают эквивалентный ответ.

В § 1 описана рефлексивная игра с точечной структурой информированности из работы [3]. В § 2 показано, что информационное равновесие в такой игре аналогично равновесию Нэша в игре на сети с линейным наилучшим ответом из статьи [4] и может быть сформулировано в терминах структуры информированности; в явном виде записаны выражения для равновесных ответов игроков, указаны условия существования и единственности равновесий. Такая формулировка позволяет рассматривать произвольную структуру связей между игроками и получить равновесие в явном виде. В § 3 приводится формулировка задачи информационного управления, аналогичной задаче стимулирования в игре на сети: показана взаимосвязь между равновесием в игре на сети с общим знанием и равновесием в игре с неполной информированностью, в которой центр сообщает новые стимулы игрокам индивидуально.

1. РЕФЛЕКСИВНЫЕ ИГРЫ И СТРУКТУРА ИНФОРМИРОВАННОСТИ АГЕНТОВ

Рефлексивная игра Γ_I с конечной структурой информированности I задается кортежем $\Gamma_I = \left\{ N, (X_i)_{i \in N}, f_i\left(\cdot\right)_{i \in N}, \Theta, \; G_I \right\}$, где N — множество реальных агентов; X_i — множество допустимых действий i-го реального агента; Θ — множество возможных значений неопределенного параметра («состояний природы»); $f_i\left(\cdot\right) : \Theta \times X \to \Re^1$ — целевая функция i-го реального агента, $i \in N$; G_I — граф рефлексивной игры.

Неформально рефлексивная игра представляет собой взаимодействие агентов, рефлексирующих относительно параметра $\theta \in \Theta$. Агенты имеют друг о друге некоторые представления – истинные

(тогда соответствующий агент является реальным) или ложные (тогда агент является фантомным). Например, в сознании второго агента присутствует экземпляр («образ») первого агента, который либо совпадает с реальным первым агентом, либо не совпадает; в случае несовпадения экземпляр первого агента является фантомным.

Граф рефлексивной игры, вершины которого соответствуют агентам, а связи — их взаимным представлениям друг о друге, состоит из следующих элементов:

 A_i — множество вершин, соответствующих возможным экземплярам i-го агента, $i \in N = \{1, ..., n\}$; ровно один из них является реальным, прочие (если они есть) являются фантомными агентами;

 $A = A_1 \cup \ldots \cup A_n$ — множество всех вершин графа, представляющее всех агентов (не будем далее различать агентов и вершины графа);

 $\theta(a)$ — состояние природы с точки зрения агента a , a \in A , θ \in Θ ;

v(a) — множество не совпадающих с a агентов, которых агент $a \in A$ считает реальными, что отражается на графе в виде стрелок (направленных связей) от этих агентов к a; множество $v(a) \subset A$ для данного агента $a \in A_i$ состоит из элементов в количестве (n-1), которые принадлежат соответственно множествам $A_i \cup \ldots \cup A_{i-1} \cup A_{i+1} \cup \ldots \cup A_n$.

Будем считать, что целевые функции всех экземпляров одного и того же реального агента совпадают, т. е. агент $a \in A_i$ стремится максимизировать функцию $f_i(\cdot)$. В этом случае можно определить информационное равновесие — набор действий агентов $x_a, a \in A$, таких, что для всех $i \in N$, $a \in A_i$

$$x_a \in \underset{x \in X_i}{\operatorname{Argmax}} f_i(\theta(a), x, x_{-a}),$$

где через x_{-a} обозначен набор действий агентов из множества v(a).

В работе [3] в качестве примера была рассмотрена рефлексивная игра с целевой функцией агентов

$$f_i(\theta, x_1, x_2, x_3) = (\theta - x_1 - x_2 - x_3)x_i - \frac{x_i^2}{2},$$
 (1)

где $x_i \ge 0$, $i \in N = \{1, 2, 3\}$; $\theta \in \Theta = \{1, 2\}$. Далее, в зависимости от различной информированности игроков, для нахождения информационного равновесия необходимо из условий первого порядка

 $\partial f_i / \partial x_i = 0$ найти наилучшие ответы игроков и решить систему линейных уравнений. Переходя к произвольному числу агентов, можно обобщить целевую функцию (1) агента i в виде

$$f_a(\theta, x_a, x_{-a}, G_I) = \left(\theta(a) - \beta \sum_b g_{ab} x_b\right) x_a - \frac{x_a^2}{2}, (2)$$

где G_I – граф рефлексивной игры, в котором $g_{ab}=1$ при $b\in v(a)$, иначе $g_{ab}=0$, $g_{aa}=0$. Параметр $\beta>0$ отражает характер зависимости от действий соседей. Система наилучших ответов игроков с функцией (2) записывается как

$$x_a = \theta(a) - \beta \sum_b g_{ab} x_b,$$

а в матричном виде

$$x = \theta - \beta G_I x$$
,

или

$$(I + \beta G_I)x = \theta,$$

где I — единичная матрица 1 . Воспользовавшись результатами работы [4], можно сформулировать следующее утверждение, позволяющее найти равновесие в рефлексивной игре с точечной структурой информированности и функцией выигрыша игроков (2) в явном виде.

Утверждение 1. Если
$$\beta \lambda_{\min} \left(\frac{G_I + G_I^T}{2} \right) < 1$$
, то

информационное равновесие в рефлексивной игре с точечной структурой информированности $\Gamma_I = \left\{ N, (X_i)_{i \in N}, v_i\left(\cdot\right)_{i \in N}, G_I \right\}$ и функцией выигрыша агента (2) существует и единственно:

$$x^* = (I + \beta G_I)^{-1} \theta.$$

Д о к а з а т е л ь с т в о эквивалентно доказательству утверждения 2 в статье [4] и основывается на свойстве игры быть потенциальной: игра с функцией выигрыша (2) обладает потенциальной функцией $\phi(x) = x^T 1 - \frac{1}{2} x^T \left(I - \beta G_I\right) x$, максимум которой является равновесием Нэша. Достаточным условием существования

¹ Нетрудно проверить, что в таком виде модель из оригинальной статьи [3] можно представить как

$$f_i(\theta, x_a, x_{-a}, G_I) = \left(\theta(a) - \sum_b g_{ab} x_b\right) x_a - x_a^2 - \frac{x_a^2}{2},$$

а система наилучших ответов принимает вид $\theta(a) - \sum_b g_{ab} x_b \\ x_a = \frac{b}{3} , \text{ или } \big(3I + G_I\big) x = \theta.$

единственного решения является вогнутость потенциальной функции. Матрица вторых производных имеет вид $\nabla^2 \varphi = -(I - \beta G_I)$, а функция φ строго вогнута тогда и только тогда, когда матрица $I - \beta G_I$ положительно определена: для любого $y \neq 0$, $y^T \left(I - \beta G_I\right) y > 0$, что эквивалентно условию $\beta \lambda_{\min} \left(G_I\right) < 1$, где $\lambda_{\min} \left(G_I\right)$ — наименьшее собственное значение матрицы G_I . Так как матрица G_I несимметрична, речь идет о наименьшем собственном значении эрмитовой компоненты матрицы G_I , $\lambda_{\min} \left(\frac{G_I + G_I^T}{2}\right)$. \spadesuit

В такой постановке игра полностью соответствует довольно популярной среди зарубежных исследователей игре локального общественного блага [4–6]. А именно, равновесие Нэша в игре локального общественного блага имеет вид $x^* = (I + \beta E)^{-1} \theta$, где в качестве сети взаимодействия выступает матрица $E = \left\{e_{ij}\right\} \in \left\{0,1\right\}^{n \times n}$ — граф взаимного влияния агентов (например, сеть знакомств, конкуренции и др.), а информационное равновесие в рефлексивной игре записывается как $x^* = \left(I + \beta G_I\right)^{-1} \theta$, где в качестве сети взаимодействия используется граф G_I рефлексивной игры. Равновесие в такой игре существует и при $\beta \lambda_{\min} \left(\frac{G_I + G_I}{2}\right) > 1$, но ниже ограничимся только

случаем утверждения 1.

Похожие модели рассматривались в работах [7–9], где они дополнялись параметром r_i , характеризующим тип i-го агента — эффективность или квалификацию его деятельности. Равновесие для

игры [7] с функцией
$$f_i(\theta, x_i) = \left(\theta_i - \sum_{j \in N} x_j\right) x_i - \frac{x_i^2}{2r_i}$$

на произвольном графе G можно представить как

$$x^* = \left(Ir^{-1} + \beta G\right)^{-1} b,$$

а равновесие для игры [8], в которой агенты с функцией выигрыша $f_i\left(\theta,x_i\right) = \left(\sum_{j\in N}\!\!x_j - h\right)\!\!x_i - \frac{x_i^2}{2r_i}$

прикладывают усилия x_i к некоторому совместному действию, которое дает положительный вклад в целевые функции агентов в случае, если сумма усилий превышает некоторый порог h, на произвольном графе G можно представить как

$$x^* = (-Ir^{-1} + \beta G)^{-1} h.$$

2. ЗАДАЧА СТИМУЛИРОВАНИЯ ДЛЯ РЕФЛЕКСИВНОЙ ИГРЫ

Для игры локального общественного блага в работе [2] была предложена задача стимулирования² – управления вектором θ – для максимизации функции общественного благосостояния:

$$W(\theta, G) = \sum_{i \in \mathbb{N}} f_i \to \max_{\theta}.$$

Рассмотрим аналогичную задачу для рефлексивной игры с точечной структурой информированности:

$$W(\theta, G_I) = \sum_{i \in \mathbb{N}} f_i \longrightarrow \max_{\theta}.$$

Будем считать, что в данной ситуации изменение стимулов возможно только для реальных агентов (заметим, что «стимулирование фантомных агентов» является, по сути, информационным управлением), однако управляющий орган (центр) может по-разному информировать реальных агентов, тем самым изменяя структуру информированности и порождая новых фантомных агентов. А именно, рассмотрим случай, когда в начале имело место общее для агентов знание, а далее происходит следующий многошаговый информационный процесс: на каждом шаге центр индивидуально сообщает об изменении состояния $\theta_i \rightarrow \hat{\theta}_i$ всем i-м реальным агентам.

Это влияет на граф рефлексивной игры следующим образом. Предположим, что в начальный момент времени агенты $N = \{1, 2, 3\}$ связаны графом взаимного влияния $E = \{e_{ii}\}$ (рис. 1, a, стрелками $i \sim j$ отражена зависимость выигрыша i-го агента от действий ј-го агента) и все три агента одинаково информированы: состояние природы с точки зрения каждого из агентов $\theta_i = \theta$ для всех *i*. После первого сообщения центра о новом значении параметра $\hat{\theta}_i$ каждому из игроков индивидуально граф взаимного влияния остается без изменений, в графе рефлексивной игры реальные агенты становятся фантомными, а новыми реальными агентами становятся вершины, возникающие в графе рефлексивной игры путем добавления узла і и связей с теми же вершинами, с которым связан фантомный агент i' в графе взаимного влияния E . При этом для реальных агентов $\theta_i = \hat{\theta}$, а для фантомных $\theta_{i'} = \theta$. Процедуру создания новых связей, возникающих в процессе изменения структуры информированности при $\theta_i \rightarrow \hat{\theta}_i$, можно представить в виде двудольного графа: если вершины і и ј связаны в исходном графе Е, тогда в новом двудольном графе одна доля — это исходный граф E, а вторая -E', и имеется связь между вершинами $i \sim j'$ (рис. 1, δ).

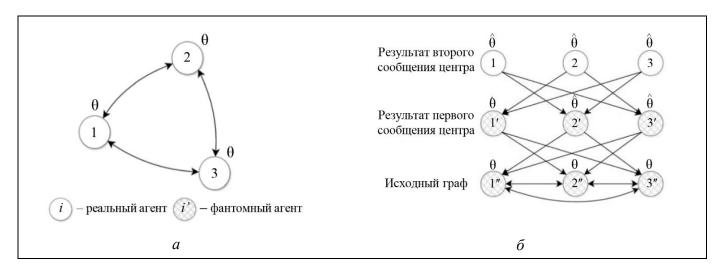


Рис. 1. Процедура передачи сообщений центром и изменение графа рефлексивной игры: a – исходный граф E взаимодействия агентов; δ – граф G_I рефлексивной игры, являющийся результатом сообщений центра агентам о новом значении параметра θ_i

 $^{^2}$ Формально в работе [2] изложена задача стимулирования для игры с равновесием $x^* = (I - \beta G)^{-1} \theta$ [10], где параметр β отражает характер зависимости от действий соседей: при $\beta > 0$ действия игроков комплементарны (англ. *strategic complements*), при $\beta < 0$ действия соседей заменяют друг друга (англ. *strategic substitutes*). Таким образом, рассматриваемой задаче соответствует случай игры в статье [2] при $\beta < 0$.

Тогда в начальный момент множества A_1, \ldots, A_n являются одноэлементными, а структура информированности G_I совпадает с графом взаимного влияния E. Далее на каждом шаге в каждое из множеств A_i , $i \in N$, добавляется один экземпляр \hat{a}_i , который становится реальным агентом; при этом $\theta(\hat{a}_i) = \hat{\theta}_i$, а множество $v(\hat{a}_i)$ составляют экземпляры агентов, реальных на предыдущем шаге. Формально равновесные ответы игроков можно представить следующим образом: равновесие реальных агентов в начальный момент (без сообщений центра) записывается в виде

$$x^* = (I + \beta E)^{-1} \theta.$$

Равновесные ответы реальных агентов после первого сообщения центра имеют вид

$$x^{*(1)} = \hat{\theta} - \beta E x^*,$$

а после второго

$$x^{*(2)} = \hat{\theta} - \beta E x^{*(1)}$$
.

Равновесные ответы реальных агентов после k-го сообщения центра таковы:

$$x^{*(k)} = \hat{\theta} - \beta E x^{*(k-1)}.$$

При этом число вершин в графе рефлексивной игры после k-го сообщения центра равно kN. Следующее утверждение позволяет описать результат воздействия центра в терминах исходного графа взаимного влияния E.

Утверждение 2. Если информационное равновесие в рефлексивной игре с точечной структурой информированности Γ_I существует и единственно, то многошаговая процедура изменения структуры информированности G_I сходится к равновесию в игре с полной информированностью агентов Γ , а именно при $k \to \infty$

$$x^{*(k)} \rightarrow (I + \beta E)^{-1} \hat{\theta}.$$

Д о к а з а т е л ь с т в о. Путем подстановки нетрудно убедиться, что при k>0 результатом k-го сообщения центра является структура G_I , порождающая следующие равновесные действия агентов:

$$x^{*(k)} = \sum_{j=0}^{k-1} (-1)^j \beta^j E^j \hat{\theta} + (-1)^k \beta^k E^k x^*.$$

При $k \to \infty$ второе слагаемое $(-1)^k \beta^k E^k x^*$ стремится к нулю в силу ограничения $\beta \lambda_{\min}(E) < 1$. Выражение $\sum_{j=0}^{k-1} (-1)^j \beta^j E^j$ в первом слагаемом является разложением матрицы $(I + \beta E)^{-1}$ в ряд Неймана [11]. \blacklozenge

3. ПРИМЕР

В целях иллюстрации полученных результатов рассмотрим пример, аналогичный приведенному в работе [3]: выигрыш f_i игрока i характеризуется функцией

$$f_i = (\theta_i - x_1 - x_2 - x_3)x_i - \frac{x_i^2}{2}$$

для случая трех агентов. Наилучшие ответы игроков таковы:

$$\begin{cases} x_1 = \frac{\theta_i - x_2 - x_3}{3}, \\ x_2 = \frac{\theta_i - x_1 - x_3}{3}, \\ x_3 = \frac{\theta_i - x_1 - x_2}{3}. \end{cases}$$

Исследуем значения $W(U, \theta) = \sum_{i \in \{1, 2, 3\}} x_i$ в зависимости

от числа сообщений центра (табл. и рис. 2). При $\theta_{i \in \{1,2,3\}} = 1 \;$ равновесные ответы игроков $\; x_{i \in \{1,2,3\}}^* = 0,2 \;,$ а значение функции общественного благосостояния $W(\theta) = 0,6$. Пусть центр меняет исходные значения $\theta_{i\in\{1,2,3\}}=1$ на новые $\hat{\theta}_{i\in\{1,2,3\}}=2$. В случае общего знания об изменении $\theta_i \rightarrow \hat{\theta}_i$ равновесные ответы игроков $x_{i\in\{1,2,3\}}^*=0,4$, а значение функции общественного благосостояния $W(\hat{\theta}) = 1, 2$. Однако в ситуации индивидуального информирования агентов об изменении $\theta_i \rightarrow \hat{\theta}_i$ на каждой итерации центр сообщает индивидуально каждому агенту ситуацию, которая имела место на предыдущем шаге. В результате этих сообщений структура информированности меняется. Равновесные ответы игроков и значение функции общественного благосостояния также меняются, в пределе достигая значений для случая общего знания.

Равновесные ответы игроков в зависимости от числа сообщений центра

No	0	1	2	3	4	5	6	7	8	9	10	11
θ	1	2	2	2	2	2	2	2	2	2	2	2
x_i^*	0,2	0,53	0,31	0,45	0,36	0,42	0,38	0,41	0,39	0,40	0,39	0,40
W	0,6	1,6	0,93	1,37	1,08	1,27	1,14	1,23	1,17	1,21	1,18	1,20

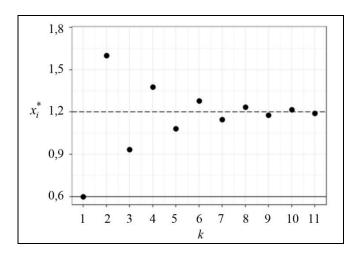


Рис. 2. Равновесные ответы игроков в зависимости от числа сообщений центра k. Точками отмечены ответы игрока x_i^* в зависимости от сообщений центра. Сплошной линией отмечены равновесные ответы агентов в игре с общим знанием при $\theta_{i\in\{1,2,3\}}=1$, пунктиром при $\hat{\theta}_{i\in\{1,2,3\}}=2$

ЗАКЛЮЧЕНИЕ

В работе рассмотрена модель коллективного поведения агентов в ситуации игровой неопределенности и неполной информированности. Для рефлексивной игры с точечной структурой информированности показано, что в случае, когда наилучшие ответы игроков линейно зависят от других связанных с ними агентов, информационное равновесие может быть описано в явном виде в терминах структуры информированности. Такой подход позволяет интерпретировать пример рефлексивной игры из работы [3] как игру локального общественного блага с неполной информированностью агентов и описать в матричном виде равновесие в рефлексивной игре с точечной структурой информированности и линейным наилучшим ответом.

Кроме того, на основе полученных в данной работе результатов появляется возможность провести сравнительное описание решений задач управления для случаев общего знания и неполной информированности агентов. В качестве примера приводится формулировка задачи информационного управления, аналогичной задаче стимулирования в игре локального общественного блага на сети: в работе показан пример механизма сообщения информации центром, когда случай общего знания и случай неполной информированности агентов в пределе дают одинаковый ответ.

ЛИТЕРАТУРА

1. Новиков Д.А., Чхартишвили А.Г. Рефлексия и управление: математические модели. – М.: Издательство физико-

- математической литературы, 2013. 412 с. [Novikov, D. A., Chkhartishvili, A.G. Reflexion and Control: Mathematical Models. Leiden: CRC Press, 2014. 298 р.]
- Galeotti, A., Golub, B., Goyal, S. Targeting Interventions in Networks // Econometrica. – 2020. – Vol. 88, no. 6. – P. 2445– 2471.
- 3. Новиков Д.А., Чхартишвили А.Г. Информационное равновесие: точечные структуры информированности // Автоматика и телемеханика. 2003. № 10. С. 111–122. [Novikov, D.A., Chkhartishvili, A.G. Information Equilibrium: Punctual Structures of Information Distribution // Automation and Remote Control. 2003. Vol. 64, no. 10. Р. 1609–1619]
- 4. Bramoullé, Y., Kranton, R., D'amours, M. Strategic Interaction and Networks // American Economic Review. 2014. Vol. 104, no. 3. P. 898—930.
- 5. Bramoullé, Y., Kranton, R. Public Goods in Networks // Journal of Economic Theory. 2007. Vol. 135, no. 1. P. 478–494.
- Bramoullé, Y., Kranton, R. Games Played on Networks / In: The Oxford Handbook on the Economics of Networks. Ed. by Y. Bramoullé, A. Galeotti, B.W. Rogers. – New York: Oxford University Press, 2016. – P. 83–112.
- Fedyanin, D., Dranov, E. Random Beliefs in Cournout Competition / Proceedings of the 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). – Lipetsk, 2023. – P. 464–469. – URL: https://ieeexplore.ieee.org/abstract/document/10349382.
- 8. *Федянин Д.Н.*, *Чхартишвили А.Г.* Об одной модели информационного управления в социальных сетях // Управление большими системами. 2010. Вып. 31. С. 265–275. [*Fedyanin, D.N., Chkhartishvili, A.G.* On a Model of Informational Control in Social Networks // Automation and Remote Control. 2011. Vol. 72, no. 10. P. 2181–2187.]
- Fedyanin, D. The Complex Mechanism of Belief Control for Cost Reduction under Stability Restriction. Cournout Competition Example. // IFAC-PapersOnline. – 2019. – Vol. 52, iss. 25. – P. 269–274.
- Ballester, C., Calvó-Armengol, A., Zenou, Y. Who's Who in Networks. Wanted: The Key Player // Econometrica. – 2006. – Vol. 74, no. 5. – P. 1403–1417.
- 11. Ланкастер П. Теория матриц. М.: Наука, 1978. [Lancaster, P. Theory of Matrices. New York: Academic Press, 1969.]

Статья представлена к публикации руководителем *PPC M. И. Гераськиным*.

Поступила в редакцию 09.10.2024, после доработки 11.11.2024. Принята к публикации 11.11.2024.

Петров Илья Владимирович - науч. сотрудник,

⊠ ivpetrov@ipu.ru

ORCID iD: https://orcid.org/0000-0002-1073-6922

Чхартишвили Александр Гедеванович – д-р физ.-мат. наук, ⊠ sandro_ch@mail.ru

ORCID iD: https://orcid.org/0000-0002-2970-1244

Институт проблем управления им. В.А. Трапезникова РАН, г. Москва.

Эта статья доступна по <u>лицензии Creative Commons</u> «Attribution» («Атрибуция») 4.0 Всемирная.

THE INCENTIVE-TARGETING PROBLEM IN A REFLEXIVE GAME WITH A POINT-TYPE AWARENESS STRUCTURE

I. V. Petrov* and A. G. Chkhartishvili**

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

*⊠ ivpetrov@ipu.ru, **⊠ sandro_ch@mail.ru

Abstract. This paper considers a collective behavior model of agents under strategic uncertainty and incomplete awareness. Decision-making is modeled by a reflexive game in which participants choose their actions based on a hierarchy of beliefs about the game parameters, beliefs about beliefs, and so on. The study is focused on reflexive games with a point-type awareness structure and the linear best response of players. As shown below, the informational equilibrium in such games is analogous to the Nash equilibrium in a game on a network. Explicit expressions for the equilibrium responses of players are derived and conditions for the existence and uniqueness of equilibria are established. An incentive-targeting problem similar to that in a corresponding game on a network is formulated: a relationship is obtained between the equilibria in the game with common knowledge and the game with incomplete awareness in which the Principal individually reports new incentives to the players.

Keywords: reflexive game, informational equilibrium, games on networks, networked control.