Model of encoding time intervals by active agents
- 作者: Zhilyakova L.Y.1, Bazenkov N.I.1
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- 期: 编号 117 (2025)
- 页面: 265-285
- 栏目: Networking in control sciences
- URL: https://bakhtiniada.ru/1819-2440/article/view/360567
- DOI: https://doi.org/10.25728/ubs.2025.117.13
- ID: 360567
如何引用文章
全文:
详细
作者简介
Liudmila Zhilyakova
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: zhilyakova@ipu.ru
Moscow
Nikolay Bazenkov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: bazenkov@ipu.ru
Moscow
参考
1. КУЛИЕВА А.К., БЕРЕЗНЕР Т.А., ШИШУНОВА А.Н. и др. Когнитивные теории восприятия времени // Вест-ник Санкт-Петербургского университета. Психология. – 2025. – Т. 15. – Вып. 1. – С. 51–65.2. BALCI F., SIMEN P. Neurocomputational Models of Inter-val Timing: Seeing the Forest for the Trees // Neurobiology of Interval Timing. – 2024. – P. 51–78.3. BIGUS E.R., LEE H.W., BOWLER J.C. et al. Medial ento-rhinal cortex mediates learning of context-dependent inter-val timing behavior // Nature Neuroscience. – 2024. – Vol. 27, No. 8. – P. 1587–1598. 4. BUONOMANO D.V., LAJE R. Population clocks: motor timing with neural dynamics // Trends in Cognitive Sciences. – 2010. – Vol. 14, No. 12. – P. 520–527.5. CHHABRIA V.A., JIANG W., KAHNG A.B. et al. A Ma-chine Learning Approach to Improving Timing Consistency between Global Route and Detailed Route // arXiv:2305.06917. – 2023.6. CHURCH R.M., GIBBON J. Temporal generalization // Journal of Experimental Psychology: Animal Behavior Pro-cesses. – 1982. – Vol. 8, No. 2. – P. 165.7. DEVERETT B., FAULKNER R., FORTUNATO M. et al. Interval timing in deep reinforcement learning agents // arXiv:1905.13469. – 2019.8. GIBBON J. Scalar expectancy theory and Weber's law in animal timing // Psychological review. – 1977. – Vol. 84, No. 3. – P. 279.9. GIBBON J., CHURCH R.M. Representation of time // Cogni-tion. – 1990. – Vol. 37, No. 1–2. – P. 23–54.10. GOEL A., BUONOMANO D.V. Timing as an intrinsic prop-erty of neural networks: evidence from in vivo and in vitro experiments // Philosophical Transactions of the Royal So-ciety B: Biological Sciences. – 2014. – Vol. 369, No. 1637. – P. 20120460.11. HARTCHER-O’BRIEN J., BRIGHOUSE C., LEVITAN C.A. A single mechanism account of duration and rate processing via the pacemaker–accumulator and beat frequency models // Current Opinion in Behavioral Sciences. – 2016. – Vol. 8. – P. 268–275.12. PATON J.J., BUONOMANO D.V The neural basis of tim-ing: distributed mechanisms for diverse functions // Neuron. – 2018. – Vol. 98, No. 4. – P. 687–705.13. TACIKOWSKI P., KALENDER G., CILIBERTI D. et al. Human hippocampal and entorhinal neurons encode the temporal structure of experience // Nature. – 2024. – Vol. 635, No. 8037. – P. 160–167.14. TREISMAN M. Temporal discrimination and the indiffer-ence interval: Implications for a model of the "internal clock" // Psychological Monographs: General and Applied. – 1963. – Vol. 77, No. 13. – P. 1.15. TREISMAN M., FAULKNER A., NAISH P.L. et al. The in-ternal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic fre-quency // Perception. – 1990. – Vol. 19, No. 6. – P. 705–742.16. XIE T., HUANG C., ZHANG Y. et al. Influence of recent trial history on interval timing // Neuroscience Bulletin. – 2023. – Vol. 39, No. 4. – P. 559–575.17. XU M., ZHANG S.Y., DAN Y. et al. M. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex // Proc. of the National Academy of Sci-ences. – 2014. – Vol. 111, No. 1. – P. 480–485. 18. ZHILYAKOVA L. Modeling Neuron-Like Agents with a Network Internal Structure // Advances in Neural Computa-tion, Machine Learning, and Cognitive Research VII. NEU-ROINFORMATICS 2023. Studies in Computational Intelli-gence. – Cham: Springer Nature Switzerland, 2023. – Vol. 1120. – P. 300–307. 19. ZHILYAKOVA L. Direct and Inverse Problems of Time En-coding by Neuron-Like Agents // Advances in Neural Com-putation, Machine Learning, and Cognitive Research VIII. N I 2024. – Cham: Springer Nature Switzerland, 2024. – P. 353–361.20. ZHOU S., BUONOMANO D.V. Neural population clocks: Encoding time in dynamic patterns of neural activity // Be-havioral Neuroscience. – 2022. – Vol. 136, No. 5. – P. 374.21. ZHOU S., MASMANIDIS S.C., BUONOMANO D.V. Neural sequences as an optimal dynamical regime for the readout of time // Neuron. – 2020. – Vol. 108, No. 4. – P. 651–658. e5.
补充文件


