Determining the architecture of a neural network in the problem of estimating the state of the battery charge
- Autores: Yakovlev I.A.1, Elizarova A.V.1, Saitova G.A.1
-
Afiliações:
- Ufa State Aviation Technical University
- Edição: Nº 101 (2023)
- Páginas: 97-122
- Seção: Control of technological systems and processes
- URL: https://bakhtiniada.ru/1819-2440/article/view/360593
- DOI: https://doi.org/10.25728/ubs.2023.101.6
- ID: 360593
Citar
Texto integral
Resumo
Sobre autores
Ilya Yakovlev
Ufa State Aviation Technical University
Email: ilya-yakovlev-1999@bk.ru
Ufa
Anastasia Elizarova
Ufa State Aviation Technical University
Email: elizarovaanastasia@gmail.com
Ufa
Guzel Saitova
Ufa State Aviation Technical University
Email: saitova@bk.ru
Ufa
Bibliografia
1. ГАЛУШКИН Н.Е., ГАЛУШКИНА Н.Н. Анализ эмпири-ческих зависимостей, описывающих разряд щелочных аккумуляторов // Электрохимическая энергетика. – 2005. – Т. 5, №1. – С. 43–50. 2. ГЕЙДАРОВ П.Ш. Сравнительный анализ результатов обучений нейронной сети с вычисленными весовыми зна-чениями и с генерацией весовых значений случайным об-разом // Автоматика и телемеханика. – 2020. – №7. – С. 56–78. Англ.: GEIDAROV P. Comparative analysis of the results of training a neural network with calculated weights and with random generation of the weights // Auto-mation and Remote Control. – 2020. – Vol. 81:7. – P. 1211–1229. 3. ЕРИН С. Литиевые аккумуляторы: от сырья до готовых химических источников тока // Технологии в электрон-ной промышленности. – 2014. – №3. – С. 70–73. 4. САИТОВА Г.А., ЕЛИЗАРОВА А.В. Нейросетевая мо-дель для оценки состояния заряженности литий-ионного аккумулятора // Перспективные информацион-ные технологии (ПИТ–2021) [Электронный ресурс]: тру-ды Международной научно-технической конференции / Под ред. С.А. Прохорова. – Электрон. текстовые и граф. дан.– Самара: Изд-во Самарского научного центра РАН, 2021. – С. 288–293. 5. ХАЙКИН С. Нейронные сети. Полный курс. Второе из-дание: перевод с англ. – М: Издательский дом «Виль-ямс», 2006. – 1104 с. 6. ЧУДИНОВ Е.А., ТКАЧУК С.А., ШИШКО В.С. Техноло-гические основы производства литий-ионного аккуму-лятора // Электрохимическая энергетика. – 2015. – Т. 15, №2. – С. 84–92. 7. CHANG W.Y. The state of charge estimating methods for battery: A review // International Scholarly Research Notices. – 2013. – Vol. 2013. – 8 p. 8. LI S. et al. State-of-charge estimation of lithium-ion batteries in the battery degradation process based on recurrent neu-ral network // Energies. – 2021. – Vol. 14, No. 2. – P. 306. 9. TANG X. et al. Li-ion battery parameter estimation for state of charge // IEEE American Control Conference (ACC-2011). – IEEE, 2011. – P. 941–946. 10. TIAN J. et al. Flexible battery state of health and state of charge estimation using partial charging data and deep learning // Energy Storage Materials. – 2022. – Vol. 51. – P. 372–381. 11. VIDAL C. et al. Machine learning applied to electrified ve-hicle battery state of charge and state of health estimation: State-of-the-art // IEEE Access. – 2020. – Vol. 8. – P. 52796–52814. 12. WANG K. et al. State of charge estimation of composite en-ergy storage systems with supercapacitors and lithium bat-teries // Complexity. – 2021. – Vol. 2021. 13. WANG L. et al. State of charge estimation for LiFePO4 bat-tery via dual extended kalman filter and charging voltage curve // Electrochimica Acta. – 2019. – Vol. 296. – P. 1009–1017. 14. WANG Q. et al. Power battery state of charge estimation based on extended Kalman filter // Journal of Renewable and Sustainable Energy. – 2019. – Vol. 11, No. 1. – P. 014302. 15. WANG Y., CHEN Z. A framework for state-of-charge and remaining discharge time prediction using unscented parti-cle filter // Applied Energy. – 2020. – Vol. 260. – P. 114324. 16. WEI Z. et al. Load current and state-of-charge coestimation for current sensor-free lithium-ion battery // IEEE Trans. on Power Electronics. – 2021. – Vol. 36, No. 10. – P. 10970–10975. 17. XI Z. et al. Learning of battery model bias for effective state of charge estimation of lithium-ion batteries // IEEE Trans. on Vehicular Technology. – 2019. – Vol. 68, No. 9. – P. 8613–8628. 18. XIA Z., QAHOUQ J.A. A. State-of-charge balancing of lith-ium-ion batteries with state-of-health awareness capability // IEEE Trans. on Industry Applications. – 2020. – Vol. 57, No. 1. – P. 673–684. 19. XIONG R. et al. A set membership theory based parameter and state of charge co-estimation method for all-climate bat-teries // Journal of Cleaner Production. – 2020. – Vol. 249. – P. 119380. 20. XIONG X. et al. A novel practical state of charge estimation method: an adaptive improved ampere‐hour method based on composite correction factor // Int. Journal of Energy Re-search. – 2020. – Vol. 44, No. 14. – P. 11385–11404. 21. XU Y. et al. Online identification of battery model parame-ters and joint state of charge and state of health estimation using dual particle filter algorithms // Int. Journal of Energy Research. – 2022. – Vol. 46, No. 14. – P. 19615–19652. 22. XUAN D.J. et al. Real-time estimation of state-of-charge in lithium-ion batteries using improved central difference trans-form method // Journal of Cleaner Production. – 2020. – Vol. 252. – P. 119787. 23. YANG B., WANG Y., ZHAN Y. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidi-rectional Long Short-Term Memory Neural Network // Ener-gies. – 2022. – Vol. 15, No. 13. – P. 4670. 24. YANG F. et al. State-of-charge estimation of lithium-ion bat-teries via long short-term memory network // IEEE Access. – 2019. – Vol. 7. – P. 53792–53799. 25. YANG F. et al. State-of-charge estimation of lithium-ion bat-teries using LSTM and UKF // Energy. – 2020. – Vol. 201. – P. 117664. 26. ZHANG K. et al. State of charge estimation for lithium bat-tery based on adaptively weighting cubature particle filter // IEEE Access. – 2019. – Vol. 7. – P. 166657–166666. 27. ZHANG R. et al. State of the art of lithium-ion battery SOC estimation for electrical vehicles // Energies. – 2018. – Vol. 11, No. 7. – P. 1820.
Arquivos suplementares


