Метаболиты арахидоновой кислоты и кортикальная депрессия: от локальной модели к пространственной

Обложка

Цитировать

Полный текст

Аннотация

Предпосылки и цели: Согласно известным экспериментальным данным, различные метаболиты арахидоновой кислоты оказывают сосудосуживающее либо сосудорасширяющее действие, что, в свою очередь, влияет на нейронную активность. Воздействовать на уровень производства метаболитов можно несколькими путями: регуляцией уровня кислорода или глутамат-зависимым повышением концентрации астроцитарного кальция в ответ на активность нейронов. Для анализа возможных паттернов активности нервной ткани в ответ на изменение метаболического профиля разработана математическая модель, в рамках которой были проведены вычислительные эксперименты как в локальном случае, так и на пространственных шаблонах. Материалы и методы: В работе предложена точечная модель и её дальнейшее расширение для моделирования пространственно-распределённой системы связанных нейроглиоваскулярных единиц. Для проверки работоспособности модели включено внешнее воздействие, приводящее к увеличению нейронального калия и возникновению распространяющейся кортикальной депрессии, и внешнее воздействие на кальциевую активность с целью анализа влияния метаболитов арахидоновой кислоты на исследуемый процесс. Результаты: Разработана новая точечная модель нейроглиоваскулярной единицы, которая симулирует влияние метаболитов арахидоновой кислоты на кортикальную депрессию, при этом расширение точечной модели на пространственно-распределённый случай позволило определить пути влияния астроцитарной активности на пространственно-временные характеристики волны распространяющейся кортикальной депрессии. Численные исследования точечной и пространственной моделей подтвердили соответствие решений наблюдаемым экспериментальным эффектам, в том числе связанным с особенностями влияния метаболитов арахидоновой кислоты на скорость, обширность и время жизни волн депрессии. Предполагается, что в дальнейшем результаты теоретического исследования могут быть использованы для поиска путей вывода нервной ткани из патологических состояний, возникающих при эпилепсии, мигренях и ряде нейродегенеративных заболеваний, в том числе связанных с возникновением волн кортикальной депрессии. 

Об авторах

Андрей Юрьевич Верисокин

Курский государственный университет

ORCID iD: 0000-0002-3655-7682
Россия, 305000, г. Курск, ул. Радищева, д. 33

Дарья Вячеславовна Вервейко

Курский государственный университет

ORCID iD: 0000-0003-3661-3928
Россия, 305000, г. Курск, ул. Радищева, д. 33

Алексей Рудольфович Браже

Московский государственный университет им. М. В. Ломоносова

ORCID iD: 0000-0002-1495-4652
Scopus Author ID: 9242162600
ResearcherId: G-9635-2016
119991, Российская Федерация, Москва, Ленинские горы, д. 1

Список литературы

  1. Koehler R. C., Gebremedhin D., Harder D. R. Role of astrocytes in cerebrovascular regulation // J. Appl. Physiol. 2006. Vol. 100. P. 307–317. https://doi.org/10.1152/japplphysiol.00938.2005
  2. Attwell D., Buchan A., Charpak S., Lauritzen M., MacVicar B. A., Newman E. Glial and neuronal control of brain blood flow // Nature. 2010. Vol. 468. P. 232–243. https://doi.org/10.1038/nature09613
  3. Zhenzhou L., McConnell H. L., Stackhouse T. L., Pike M. M., Zhang W., Mishra A. Increased 20-HETE signaling suppresses capillary neurovascular coupling after ischemic stroke in regions beyond the infarct // Front. Cell. Neurosci. 2021. Vol. 15. Article number 762843. https://doi.org/10.3389/fncel.2021.762843
  4. Gómez-Ramos A., Díaz-Nido J., Smith M. A., Perry G., Avila J. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells // J. Neurosci. Res. 2003. Vol. 71. P. 863–870. https://doi.org/10.1002/jnr.10525
  5. González A., Singh S. K., Churruca M., Maccioni R. B. Alzheimer’s Disease and Tau Self-Assembly: In the Search of the Missing Link // Int. J. Mol. Sci. 2022. Vol. 23, iss. 8. Article number 4192. https://doi.org/ijms23084192
  6. Yamazaki K., Vo-Ho V.-K., Bulsara D., Le N. Spiking Neural Networks and Their Applications: A Review // Brain Sciences. 2022. Vol. 12, iss. 7. Article number 863. https://doi.org/10.3390/brainsci12070863
  7. Manninen T., Havela R., Linne M. L. Computational Models for Calcium-Mediated Astrocyte Functions // Front. Comput. Neurosci. 2018. Vol. 12. Article number 14. https://doi.org/10.3389/fncom.2018.00014
  8. Huneau C., Benali H., Chabriat H. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models // Front. Neurosci. 2015. Vol. 9. Article number 467. https://doi.org/10.3389/fnins.2015.00467
  9. Постнов Д. Э., Постнов Д. Д., Жирин Р. А. Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского. Моделирование колебательных и волновых процессов в двумерных средах произвольной геометрии на базе высокоскоростных параллельных вычислений на графических процессорных устройствах по технологии CUDA «AGEOM_CUDA». Свидетельство о государственной регистрации программы для ЭВМ № 2012610085 РФ от 10.01.2012.
  10. Ullah G., Jung P., Cornell-Bell A. H. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration // Cell Calcium. 2006. Vol. 39. P. 197–208. https://doi.org/10.1016/j.ceca.2005.10.009
  11. Verisokin A. Yu., Verveyko D. V., Postnov D. E., Brazhe A. R. Modeling of astrocyte networks: Towards realistic topology and dynamics // Front. Cell. Neurosci. 2021. Vol. 15. Article number 645068. https://doi.org/10.3389/fncel.2021.645068
  12. Chizhov A. V., Zefirov A. V., Amakhin D. V., Smirnova E. Y., Zaitsev A. V. Minimal model of interictal and ictal discharges “Epileptor-2” // PLoS Comput. Biol. 2018. Vol. 14. Article number e1006186. https://doi.org/10.1371/journal.pcbi.1006186
  13. Cressman J. R., Ullah G., Ziburkus J., Schiff S. J., Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics // J. Comput. Neurosci. 2009. Vol. 26, iss. 2. P. 159–170. https://doi.org/10.1007/s10827-008-0132-4
  14. MacVicar B. A., Newman E. A. Astrocyte regulation of blood flow in the brain // Cold Spring Harb. Perspect. Biol. 2015. Vol. 7. Article number a020388. https://doi.org/10.1101/cshperspect.a020388
  15. Volterra A., Liaudet N., Savtchouk I. Astrocyte Ca2+ signalling: An unexpected complexity // Nat. Rev. Neurosci. 2014. Vol. 15. P. 327–335. https://doi.org/10.1038/nrn3725
  16. Khakh B., Sofroniew M. Diversity of astrocyte functions and phenotypes in neural circuits // Nat. Neurosci. 2015. Vol. 18. P. 942–952. https://doi.org/10.1038/nn.4043
  17. Verkhratsky A., Nedergaard M. Physiology of Astroglia // Physiol. Rev. 2018. Vol. 98. P. 239–389. https://doi.org/10.1152/physrev.00042.2016

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».