Численный анализ напряженно-деформированного состояния остеотомий первой плюсневой кости

Обложка

Цитировать

Полный текст

Аннотация

Отклонение первого пальца стопы кнаружи, взаимосвязанное с отклонением первой плюсневой кости кнутри, встречается у 46% пациентов старшей возрастной группы и называется вальгусной деформацией первого пальца стопы. Негативное влияние данной патологии на качество жизни пациентов является причиной обращения за медицинской помощью, золотым стандартом оказания которой считается хирургическая коррекция, а базисной хирургической техникой служит остеотомия (распиливание кости и фиксация ее фрагментов имплантатами) первой плюсневой кости. При этом идеальная остеотомия должна обеспечивать первоначальную стабильность в раннем послеоперационном периоде. Однако большое число способов выполнения остеотомии, а также преимущества и недостатки каждого из хирургических приемов не позволяют считать какой-то из них наиболее успешным. В этой связи цель работы состояла в разработке и валидации биомеханической модели остеотомии первой плюсневой кости для анализа ее стабильности и надежности в зависимости от типа остеотомии, степени смещения фрагментов кости, а также количества скрепляющих винтов. В данном исследовании проведено биомеханическое моделирование наиболее часто используемых вариантов остеотомии первой плюсневой кости стопы при хирургическом лечении ее вальгусной деформации. С этой целью было создано 10 моделей остеотомий отдельной первой плюсневой кости, которые затем были подвергнуты статическому нагружению для анализа их напряженно-деформированного состояния и оценки их успешности. Выявлены успешные (стабильные и надежные) варианты лечения, а также неуспешные. Неуспешными приняты два из десяти рассмотренных вариантов — остеотомии типа scarf со смещением фрагментов кости на 2/3 ее диаметра и закрепленными одним винтом. Выявлено, что остеотомии типа сhevron показали более высокую стабильность в сравнении со scarf-остеотомиями. В  данном исследовании впервые проведены численные эксперименты для сравнительного анализа стабильности и прочности наиболее часто используемых вариантов остеотомий на базе модели одной кости. Разработана и валидирована на основе натурных экспериментов биомеханическая модель scarf-остеотомии первой плюсневой кости.

Об авторах

Асель Валерьевна Полиенко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0003-4471-6599
Россия, 410026, г. Саратов, ул. Астраханская, 83

Дмитрий Валерьевич Иванов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0003-1640-6091
Россия, 410026, г. Саратов, ул. Астраханская, 83

Сергей Иванович Киреев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-3318-5633
Россия, 410026, г. Саратов, ул. Астраханская, 83

Леонид Валентинович Бессонов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-5636-1644
Scopus Author ID: 57204800512
ResearcherId: G-4699-2015
Россия, 410026, г. Саратов, ул. Астраханская, 83

Алина Мирболатовна Мулдашева

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

Россия, 410026, г. Саратов, ул. Астраханская, 83

Елена Сергеевна Оленко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0003-1573-0623
Scopus Author ID: 26658534900
ResearcherId: AAD-3276-2022
Россия, 410026, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Nix S., Smith M., Vicenzino B. Prevalence of hallux valgus in the general population: A systematic review and meta-analysis // Journal of Foot and Ankle Research. 2010. Vol. 27, iss. 3. P. 21. https://doi.org/10.1186/1757-1146-3-21
  2. Ray J. J., Friedmann A. J., Hanselman A. E., Vaida J., Dayton P. D., Hatch D. J., Smith B., Santrock R. D. Hallux Valgus // Foot & Ankle Orthopaedics. 2019. Vol. 4, iss. 2. Art. 2473011419838500. https://doi.org/10.1177/2473011419838500
  3. Sammarco V. J., Acevedo J. Stability and fixation techniques in first metatarsal osteotomies // Foot and Ankle Clinics. 2001. Vol. 6, iss. 3. P. 409–432. https://doi.org/10.1016/S1083-7515(03)00105-0
  4. Unal M., Baran O., Uzun B., Turan A.T. Comparison of screw-fixation stabilities of first metatarsal shaft osteotomies: A biomechanical study // Acta Orthopaedica et Traumatologica Turcica. 2010. Vol. 44, iss. 1. P. 70–75. https://doi.org/10.3944/AOTT.2010.2209
  5. Matzaroglou C., Bougas P., Panagiotopoulos E., Saridis A., Karanikolas M., Kouzoudis D. Ninety-degree chevron osteotomy for correction of hallux valgus deformity: Clinical data and finite element analysis // The Open Orthopaedics Journal. 2010. Vol. 4. P. 152–156. https://doi.org/10.2174/1874325001004010152
  6. Голядкина А. А., Полиенко А. В., Киреев С. И., Курманов А. Г., Киреев В. С. Анализ биомеханических параметров остеотомии первой плюсневой кости // Российский журнал биомеханики. 2019. Т. 23, № 3. С. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
  7. Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // Journal of Orthopaedic Surgery. 2022. Vol. 30, iss. 3. Art. 10225536221143816. https://doi.org/10.1177/10225536221143816
  8. Shih K. S., Hsu C. C., Huang G. T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method // Bioengineering (Basel). 2023. Vol. 10, iss. 4. Art. 499. https://doi.org/10.3390/bioengineering10040499
  9. Xie Q., Li X., Wang P. Three dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // Journal of Orthopaedic Surgery. 2023. Vol. 31, iss. 2. Art. 10225536231175235. https://doi.org/10.1177/10225536231175235
  10. Shin K. S., Hsu C. C., Lin T. W., Huang K. T., Hou Sh. M. Biomechanical evaluation of different hallux valgus treatment with plate fixations using single first metatarsal bone model and musculoskeletal lower extremity model // Journal of Biomechanical Science and Engineering. 2021. Vol. 16, iss. 2. P. 1–12. https://doi.org/10.1299/jbse.21-00073
  11. Guo J., Wang L., Mao R., Chang C., Wen J., Fan Y. Biomechanical evaluation of the first ray in pre-/post-operative hallux valgus: A comparative study // Clinical Biomechanics. 2018. Vol. 60. P. 1–8. https://doi.org/10.1016/j.clinbiomech.2018.06.002
  12. Wong D. W., Wang Y., Chen T. L., Yan F., Peng Y., Tan Q., Ni M., Leung A. K., Zhang M. Finite element analysis of generalized ligament laxity on the deterioration of hallux valgus deformity (bunion) // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. Art. 571192. https://doi.org/10.3389/fbioe.2020.571192
  13. Favre P., Farine M., Snedeker J. G., Maquieira G. J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. Vol. 25, iss. 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
  14. Коробейников С. Н. Нелинейное деформирование твердых тел. Новосибирск : Изд-во СО РАН, 2000. 262 с.
  15. Goldstein S. A. The mechanical properties of trabecular bone: Dependence on anatomic location and function // Journal of Biomechanics. 1987. Vol. 20, iss. 11–12. Р. 1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6
  16. Titanium Alloys in Medical Applications // AZoM. 2023. URL: https://www.azom.com/article.aspx?ArticleID=1794 (дата обращения: 05.04.2023).
  17. Material Data Sheet // SLM solutions. Ti-Alloy Ti6Al4V ELI (Grade 23). URL: https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/MDS_Ti-Alloy_Ti6Al4V__ELI_0719_EN.pdf (дата обращения: 05.04.2023).
  18. Havaldar R., Pilli S. C., Putti B. B. Insights into the effects of tensile and compressive loadings on human femur bone // Advanced Biomedical Research. 2014. Vol. 3. Art. 110. https://doi.org/10.4103/2277-9175.129375
  19. Иванов Д. В. Биомеханическая поддержка решения врача при выборе варианта лечения на основе количественных критериев оценки успешности // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22, вып. 1. С. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
  20. Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot and Ankle Surgery. 2019. Vol. 25, iss. 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».