Однородные пространства неразрешимых групп Ли, не допускающие эквиаффинных связностей ненулевой кривизны

Обложка

Цитировать

Полный текст

Аннотация

Важный подкласс среди однородных пространств формируют изотропно-точные однородные пространства, в частности, этот подкласс содержит все однородные пространства, допускающие инвариантную аффинную связность. Аффинная связность является эквиаффинной, если она допускает параллельную форму объема. Целью работы является локальное описание трехмерных однородных пространств, не допускающих инвариантных эквиаффинных связностей ненулевой кривизны, рассматривается случай неразрешимой группы Ли преобразований. Определены основные понятия: изотропно-точная пара, инвариантная аффинная связность, тензоры кривизны и кручения, тензор Риччи, эквиаффинная связность. Локальное изучение однородных пространств равносильно исследованию пар, состоящих из алгебры Ли и ее подалгебры. Для трехмерных однородных пространств неразрешимых групп Ли, допускающих инвариантные связности только ненулевой кривизны, определено, при каких условиях пространство не допускает эквиаффинных связностей. Исследования основаны на использовании свойств алгебр Ли, групп Ли и однородных пространств и носят, главным образом, локальный характер. Особенностью методов, представленных в работе, является применение чисто алгебраического подхода к описанию многообразий и связностей на них. Полученные результаты могут быть использованы в работах по дифференциальной геометрии, дифференциальным уравнениям, топологии, а также в других областях математики и физики, поскольку многие фундаментальные задачи в этих областях связаны с изучением инвариантных объектов на однородных пространствах, а алгоритмы могут быть компьютеризированы и применены для решения аналогичных задач в больших размерностях.

Об авторах

Наталья Павловна Можей

Белорусский государственный университет информатики и радиоэлектроники; Белорусский государственный университет, г. Минск, Беларусь

ORCID iD: 0000-0001-9237-7208
Беларусь, 220013, г. Минск, ул. П. Бровки, д. 6

Список литературы

  1. Белько И. В., Бурдун А. А., Ведерников В. И., Феденко А. С. Дифференциальная геометрия. Минск : Изд-во БГУ, 1982. 255 с.
  2. Klein F. A comparative review of recent researches in geometry // Bulletin of the American Mathematical Society. 1893. Vol. 2. P. 215–249. https://doi.org/10.1090/S0002-9904-1893-00147-X
  3. Nomizu K., Sasaki T. Affine Differential Geometry: Geometry of Affine Immersions. Cambridge ; New York : Cambridge University Press, 1994. 263 p.
  4. Mozhey N. P. Connections of nonzero curvature on homogeneous spaces of unsolvable transformation groups // Siberian Electronic Mathematical Reports. 2018. Vol. 15. P. 773–785. https://doi.org/10.17377/semi.2018.15.063
  5. Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, 1978. 628 p. https://doi.org/10.1090/gsm/034
  6. Mostow G. D. The extensibility of local Lie groups of transformations and groups of surfaces // Annals of Mathematics. 1950. Vol. 52, iss. 3. P. 606–636. https://doi.org/10.2307/1969437
  7. Nomizu K. Invariant affine connections on homogeneous spaces // American Journal of Mathematics. 1954. Vol. 76, iss. 1. P. 33–65. https://doi.org/10.2307/2372398
  8. Kobayashi S., Nomizu K. Foundations of Differential Geometry. New York : John Wiley and Sons, 1963. Vol. 1. 454 p.
  9. Kobayashi S., Nomizu K. Foundations of Differential Geometry. New York : John Wiley and Sons, 1969. Vol. 2. 488 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».