Исправление функций и интерполяция типа Лагранжа – Якоби

Обложка

Цитировать

Полный текст

Аннотация

Известно, что интерполяционный процесс Лагранжа с узлами в нулях многочленов Чебышева может расходиться всюду (с произвольными узлами — почти всюду), подобно ряду Фурье суммируемой функции. В то же время  известно, что любую измеримую (конечную почти всюду) функцию можно исправить на множестве сколь угодно малой меры так, что ее ряд Фурье станет равномерно сходящимся (так называемое усиленное $C$-свойство). Возникает вопрос, не обладает ли класс непрерывных функций подобным свойством по отношению к интерполяционному процессу по той или иной матрице узлов? В настоящей работе показано, что существует матрица узлов интерполирования $\mathfrak{M}_\gamma$, как угодно близкая к матрице узлов Якоби $\mathfrak{M}^{(\alpha,\beta)}$, $\alpha,\beta>-1$, такая, что после исправления (с сохранением непрерывности) функции $f\in{C[-1,1]}$ на множестве как угодно малой меры интерполяционный процесс с узлами $ \mathfrak{M}\gamma$ будет сходиться к исправленной функции равномерно на $[a,b]\in (-1,1)$.

Об авторах

Владимир Васильевич Новиков

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

Россия, 410026, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Grunwald G. Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Stetiger Funktionen // Annals of Mathematics. 1936. Vol. 37, № 4. P. 908–918. https://doi.org/10.2307/1968627
  2. Marcinkiewicz J. Sur la divergence des polynomes d’interpolation // Acta litterarum ac scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae : Sectio scientiarum mathematicarum. 1937. Vol. 8. P. 131–135.
  3. Erdos P., Vertesi P. On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes // Acta Mathematica Academiae Scientiarum Hungaricae. 1980. Vol. 36, iss. 1–2. P. 71–89. https://doi.org/10.1007/BF01897094
  4. Menchoff D. Sur les series de Fourier des fonctions continues [О рядах Фурье от непрерывных функций] // Математический сборник. 1940. Т. 8 (50), № 3. C. 493–518. URL: https://mi.mathnet.ru/sm6044 (дата обращения: 30.03.2022).
  5. Бари Н. К. Тригонометрические ряды. Москва : Физматгиз, 1961. 936 с.
  6. Натансон Г. И. Двусторонняя оценка функции Лебега интерполяционного процесса Лагранжа с узлами Якоби // Известия вузов. Математика. 1967. № 11. С. 67–74. URL: https://mi.mathnet.ru/ivm3239 (дата обращения: 30.03.2022).
  7. Привалов А. А. Критерий равномерной сходимости интерполяционных процессов Лагранжа // Известия вузов. Математика. 1986. № 5. C. 49–59. URL: https://mi.mathnet.ru/ivm7554 (дата обращения: 30.03.2022).
  8. Неваи Г. П. Замечания об интерполировании // Acta Mathematica Academiae Scientiarum Hungaricae. 1974. Vol. 25, iss. 1–2. P. 123–144. https://doi.org/10.1007/BF01901754
  9. Сегё Г. Ортогональные многочлены. Москва : Физматлит, 1962. 500 с.
  10. Новиков В. В. Исправление функций и интерполяция Лагранжа в узлах, близких к узлам Якоби // Современные проблемы теории функций и их приложения : материалы 20-й междунар. Сарат. зимн. шк. (Саратов, 28 января –1 февраля 2020 г.). Саратов : Научная книга, 2020. С. 277–280. EDN: BJDTHR

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».