Золотые нанозвезды как фотоагент при антимикробном воздействии инфракрасного (808 нм) лазерного излучения

Обложка

Цитировать

Полный текст

Аннотация

Синтезированы и охарактеризованы золотые нанозвезды со средним диаметром ядра 122,2 нм и длиной шипов 114,6 нм в концентрации 5,36×1010 шт/мл с максимумом поглощения 840 нм. Золотые нанозведы были покрыты тиолированным полиэтиленгликолем, его количество составило около 8×104 молекул на 1 частицу и около 4,4×1015 молекул/мл в коллоиде. Дзета-потенциал золотых нанозвезд, покрытых PEG-SH, составил −2,3 мВ. Исследовано сочетанное влияние золотых нанозвезд и низкоинтенсивного инфракрасного (808 нм) лазерного излучения на бактерии Staphylococcus aureus 209 P и Escherichia coli 113-13. Инкубация взвесей микроорганизмов в присутствии наночастиц без доступа света не приводила к существенному сокращению численности бактерий. Облучение в течение 30 мин бактериальных суспензий, содержащих наночастицы, вызывало гибель 39% популяции S. aureus и 80% популяции E. coli. Повышение температуры контрольных образцов, не содержащих фототермических агентов, в обоих случаях не превышало 1°С на протяжении всего времени эксперимента. Для суспензий бактерий (в равной степени S. aureus и E. coli), инкубированныхс золотыми нанозвездами в процессе облучения, было выявлено повышение температурного показателя, в среднем, на 4°С. Более выраженная антибактериальная активность комбинации золотых нанозвезд и инфракрасного (808 нм) лазерного излучения в отношении E. coli может быть объяснена также большей чувствительностью грамотрицательных микроорганизмов к фототермическому воздействию.

Об авторах

Андрей Викторович Симоненко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0003-0730-4843
г.Саратов, ул. Астраханская, 83

Григорий Константинович Савельев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-9752-0541
г.Саратов, ул. Астраханская, 83

Айя Нидаль Эль-Хих

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0003-1149-3966
г.Саратов, ул. Астраханская, 83

Виталий Андреевич Ханадеев

Институт биохимии и физиологии растений и микроорганизмов РАН

ORCID iD: 0000-0003-3404-5402
410049, Россия, Саратов, просп. Энтузиастов, 13

Елена Святославна Тучина

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

г.Саратов, ул. Астраханская, 83

Список литературы

  1. Feng Y., Liu L., Zhang J., Aslan H., Dong M. Photoactive antimicrobial nanomaterials // J. Mater. Chem. B. 2017. Vol. 5. P. 8631–8652. https://doi.org/10.1039/C7TB01860F
  2. Tao C. Antimicrobial activity and toxicity of gold nanoparticles: Research progress, challenges and prospects // Letters in Applied Microbiology. 2018. Vol. 67. P. 537–543. https://doi.org/10.1111/lam.13082
  3. Penders J., Stolzoff M., Hickey D. J., Andersson M., Webster T. J. Shape-dependent antibacterial effects of noncytotoxic gold nanoparticles // International Journal of Nanomedicine. 2017. Vol. 12. P. 2457–246. https://doi.org/10.2147/IJN.S124442
  4. Ray P., Lodha T., Biswas A., Sau T. K., Ramana V. Particle specifi c physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. Vol. 634. Article 127915. https://doi.org/10.1016/j.colsurfa.2021.127915.
  5. Bagga P., Hussain Siddiqui H., Akhtar J., Mahmood T., Zahera M., Khan M. S. Gold nanoparticles conjugated levofl oxacin: For improved antibacterial activity over levofl oxacin alone // Current Drug Deliv. 2017. Vol. 14. P. 114–119. https://doi.org/10.2174/1567201814666170316113432.
  6. Hu W. C., Younis M. R., Zhou Y., Wang C., Xia X. H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy // Small. 2020. Vol. 16. Article e2000553. https://doi.org/10.1002/smll.202000553.
  7. Franco D., Calabrese G., Guglielmino S. P. P., Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application // Microorganisms. 2022. Vol. 10. P. 1778–1800. https://doi.org/10.3390/microorganisms100917788
  8. Khlebtsov B. N., Panfi lova E. V., Khanadeev V. A., Khlebtsov N. G. Improved size-tunable synthesis and SERS properties of Au nanostars // J. Nanopart. Res. 2014. Vol. 16. P. 2623. https://doi.org/10.1007/s11051-014-2623-8
  9. Frens G. Controlled nucleation for regulation of particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. Vol. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
  10. Gao J., Huang X., Liu H., Zan F., Ren J. Colloidal stability of gold nanoparticles modifi ed with thiol compounds: Bioconjugation and application in cancer cell imaging // Langmuir. 2012. Vol. 28. P. 4464–4471. https://doi.org/10.1021/la401956c
  11. Rahme K., Chen L., Hobbs R. G., Morris M. A., O’Driscolle C., Holmes J. D. PEGylated gold nanoparticles: polymer quantifi cation as a function of PEG lengths and nanoparticle dimensions // RSC Adv. 2013. Vol.3. P. 6085–6094. https://doi.org/10.1039/c3ra22739a
  12. Khlebtsov B., Tuchina E., Tuchin V., Khlebtsov N. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus // RSC Advances. 2015. Vol. 5. P. 61639–61649. https://doi.org/10.1039/c5ra11713e
  13. Ryan S. M., Mantovani G., Wang X., Haddleton D. M., Brayden D. J. Advances in PEGylation of important biotech molecules: Delivery aspects // Expert Opin. Drug Deliv. 2008. Vol. 5. P. 371–383. https://doi.org/10.1517/17425247.5.4.371
  14. Al-Ani A., Boden A., Al Kobaisi M., Pingle H., Wang P.-Y., Kingshott P. The infl uence of PEG-thiol derivatives on controlling cellular and bacterial interactions with gold surfaces // Applied Surface Science. 2018. Vol. 462. P. 980–990. https://doi.org/10.1016/j.apsusc.2018.08.136
  15. Zarkov S. V., Avetisyan Yu. A., Akchurin G. G., Akchurin G. G. jn., Bibikova O. A., Tuchin V. V., Yakunin A. N. Numerical modeling of plasmonic properties of gold nanostars to prove the threshold nature of their modifi cation under laser pulse // Optical Engineering. 2020. Vol. 59. P. 061628-34. https://doi.org/10.1117/1.oe.59.6.061628

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».