Частичное закрытие прямолинейной трещины, исходящей из контура кругового отверстия в стрингерной пластине
- Авторы: Мир-Салимзаде М.г.1
-
Учреждения:
- Институт математики и механики НАН Азербайджана
- Выпуск: Том 14, № 4 (2018)
- Страницы: 313-322
- Раздел: Проблемы теории упругости
- URL: https://bakhtiniada.ru/1815-5235/article/view/346329
- DOI: https://doi.org/10.22363/1815-5235-2018-14-4-313-322
- ID: 346329
Цитировать
Полный текст
Аннотация
Имеющиеся в пластинах технологические отверстия создают повышенную концентрацию напряжений в пластине. В статье исследуется подкрепленная стрингерами тонкая пластина, имеющая круговое отверстие, из которого исходит прямолинейная трещина. Используется модель трещины со связями между берегами в концевых зонах. Пластина и подкрепляющие ребра жесткости выполнены из разных упругих и изотропных материалов. Принято, что стрингеры не подвергаются изгибу и при деформации их толщина не меняется. Пластина полагается неограниченной и подвергается растяжению на бесконечности. Рассмотрен случай частичного закрытия трещины. Действие стрингеров заменяется неизвестными эквивалентными сосредоточенными силами, приложенными в точках соединения ребер с пластиной. Для решения рассматриваемой задачи объединяются метод решения упругой задачи и метод построения в явной форме потенциалов Колосова - Мусхелишвили, соответствующих неизвестным нормальным смещениям вдоль прямолинейной трещины. Для определения параметров, характеризующих закрытие трещины, получено сингулярное интегральное уравнение, которое с помощью процедуры алгебраизации сведено к конечной нелинейной алгебраической системе. Для определения неизвестных эквивалентных сосредоточенных сил используется закон Гука. Решение алгебраической системы было получено с использованием метода последовательных приближений. Непосредственно из решения полученных алгебраических систем были найдены силы сцепления в связях, контактные напряжения и размер контактной зоны трещины. Полученные соотношения позволяют решать обратную задачу, т.е. определять характеристики и напряженное состояние подкрепленной стрингерами тонкой пластины с круговым отверстием, при которых достигается заданная область контакта берегов прямолинейной трещины, исходящей из отверстия.
Об авторах
Минавар гызы Мир-Салимзаде
Институт математики и механики НАН Азербайджана
Автор, ответственный за переписку.
Email: minavar.mirsalimzade@imm.az
кандидат физико-математических наук, ведущий научный сотрудник отдела теории ползучести, Институт математики и механики НАН Азербайджана. Область научных интересов: теория упругости, механика разрушения пластин
ул. Б. Вахабзаде, 9, Баку, Азербайджан, AZ1141Список литературы
- Mirsalimov V.M. (1977). Issledovanie predel’nogo polya napryazhenij vozle treshhin, iskhodyashhih iz konturov otverstij perforirovannoj plastiny [Study of maximum stress field alongside cracks emerging from contours of openings in a perforated plate]. Journal of Applied Mechanics and Technical Physics, (2), 147–154. (In Russ.)
- Mirsalimov V.M. (1979). Uprugoplasticheskoe ravnovesie plastiny, oslablennoj dvojakoperiodicheskoj sistemoj kruglyh otverstij i treshhinami, vyhodjashhimi na kontury otverstij [Elastic-plastic equilibrium of the plate with the double-periodical system of the round orifices and cracks running to the orifices contour]. Izvestiya AN AzSSR. Seriya Fiz.-tekh. i mat. nauk, (2), 118–125. (In Russ.)
- Mirsalimov V.M. (1980). Hrupkoe razrushenie plastiny, oslablennoj perio-dicheskoj sistemoj kruglyh otverstij s vyhodyashhimi na ih kontury treshhinami [Brittle fracture of a plate weakened by a periodic system of circular holes with cracks emanating from their contours]. International Applied Mechanics, 16(11), 992–997. (In Russ.)
- Mir-Salim-zadeh M.V. (2003). Fracture of an elastic rib reinforced plate weakened by a circular cracked hole. International Journal of Fracture, 122, L113–L117.
- Yan X. (2006). Cracks emanating from circular hole or square hole in rectangular plate in tension. Engineering Fracture Mechanics, 73(12), 1743–1754.
- Abdelmoula R., Semani K., Li J. (2007). Analysis of cracks originating at the boundary of a circular hole in an infinite plate by using a new conformal mapping approach. Applied Mathematics and Computation, 188(2), 1891–1896.
- Mirsalimov V.M., Shahbandaev E.G. (2008). Predel'noe ravnovesie teplovydeljajushhej sredy s periodicheskoj sistemoj otverstij i prjamolinejnyh treshhin [Limit equilibrium of heat-generating medium with a periodic system of holes and rectilinear cracks]. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a limit state, (1), 98–107. (In Russ).
- Mir-Salim-zade M.V. (2008). Predel’noe ravnovesie plastiny s regulyarnoj sistemoj stringerov i ishodyashhimi iz krugovogo otverstiya treshhinami [Ultimate state of a plate with a regular system of stringers and cracks issuing from a circular hole]. Journal of Machinery Manufacture and Reliability, 37, 44–51. (In Russ.)
- Shahbandaev E.G. (2008). On partial closing of cracks in heat-releasing medium weakened by a periodic system of circular holes. Proceedings of IMM of NAS of Azerbaijan, XXIX(XXXVII), 215–224.
- Chen Y.Z., Lin X.Y., Wang Z.X. (2009). A semianalytic solution for multiple curved cracks emanating from circular hole using singular integral equation. Applied Mathematics and Computation, 213, 389–404.
- Guo J.-H., Lu Z.-X., Feng X. (2010). The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials. Acta Mechanica, 215(1–4), 119–134.
- Tong D.H., Wu X.R. (2013). Determination of crack surface displacements for cracks emanating from a circular hole using weight function method. Fatigue & Fracture of Engineering Materials & Structures, 36, 340–348.
- Hasanov F.F. (2013). Modelirovanie zarozhdenija treshhin sdviga v tele, oslablennom periodicheskoj sistemoj kruglyh otverstij [Modeling of shear crack nucleation in a body, weakening by periodic system of circular holes]. Journal of mechanical engineering, 16(3), 29–37. (In Russ.)
- Iskenderov R.A. (2013). Zarozhdenie treshhiny pri poperechnom izgibe izotropnoj plastiny, oslablennoj periodicheskoj sistemoj krugovyh otverstij [The crack nucleation in the isotropic plate, weakened by a periodical system of circular holes under transverse bending]. Structural Mechanics of Engineering Constructions and Buildings, (3), 18–28. (In Russ.)
- Mirsalimov V.M., Akhmedova M.V. (2013). Uprugoplasticheskoe razrushenie tonkoj plastiny, oslablennoj periodicheskoj sistemoj krivolinejnyh otverstij [Elastoplastic fracture of a thin plate, weakened by periodic system of the curvilinear holes]. I. Yakovlev Chuvach State Pedagogical University Bulletin. Series: Mechanics of a limit state, (1), 133–144. (In Russ.)
- Liu T. J.-C. (2014). Joule heating behaviors around through crack emanating from circular hole under electric load. Engineering Fracture Mechanics, 123, 2–20.
- Yang J., Li X. (2016). Analytic solutions of problem about a circular hole with a straight crack in onedimensional hexagonal quasicrystals with piezoelectric effects. Theoretical and Applied Fracture Mechanics, 82, 17–24.
- Mirsalimov V.M. (2017). Cracks with interfacial bonds in perforated heat-releasing nuclear fuel. International Journal of Damage Mechanics. https://doi.org/10.1177/ 1056789517713072.
- Mirsalimov V.M. (1986). Nekotorye zadachi konstrukcionnogo tormozheniya treshhin [Some problems of structural arrest of cracks]. Materials Science, 22, 84–88. (In Russ.)
- Savruk M.P., Kravets V.S. (1995). Reinforcement of a thin cracked plate by a system of parallel stringers. Materials Science, 30, 95–104.
- Mir-Salim-zada M.V. (2010). Modelirovanie chastichnogo zakrytiya treshhin v perforirovannoj izotropnoj srede, usilennoj regulyarnoj sistemoj stringerov [Modeling of partial closure of cracks in a perforated isotropic medium reinforced by a regular system of stringers]. Journal of Applied Mechanics and Technical Physics, 51, 148–159. (In Russ.)
- Muskhelishvili N.I. (1977). Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti [Some basic problems of mathematical theory of elasticity]. Moscow, Nauka Publ., 707.
- Panasyuk V.V., Savruk M.P., Datsyshin A.P. (1976). Raspredelenie naprjazhenij okolo treshhin v plastinah i obolochkah [Distribution of stresses near cracks in plates and shells]. Kiev, Naukova Dumka Publ., 443. (In Russ.)
- Mirsalimov V.M. (1987). Neodnomernye uprugoplasticheskie zadachi [Non-one-dimensional elastoplastic problems]. Moscow, Nauka Publ., 256. (In Russ.)
Дополнительные файлы


