Динамические задачи строительной механики с отрицательным временем

Обложка

Цитировать

Полный текст

Аннотация

Сформулирована динамическая задача с отрицательным течением времени. Обычные уравнения движения с добавлением начальных условий достаточны не только для того, чтобы рассматривать движение деформируемой системы при обычном, прямом течении времени, но позволяют восстанавливать состояние системы для предыдущих моментов времени. Практическое приложение решения задач с отрицательным временем авторы видят, прежде всего, в контроле численных методов интегрирования уравнений движения, поскольку прямой и обратный ход не являются идентичными. Предлагаемый способ тестирования численных методов решения динамических задач в принципе может быть применен к любой вычислительной схеме интегрирования уравнений движения. Дано два примера с численным решением на основании явной вычислительной схемы с экстраполяцией по Адамсу. Решаемые задачи относятся к плоско-деформированному состоянию пластин в условиях больших перемещений. Области пластин разбиваются на треугольные конечные элементы с равномерным шагом для пространственной сетки. Криволинейные границы в этом случае получаются ступенчатыми. Результаты приведенных тестовых примеров продемонстрировали хорошую точность тестируемого метода. Были рассмотрены задачи, требующие большого количества шагов интегрирования (до 1 миллиона), при этом система возвращалась в исходное состояние с большой точностью. Второе из приведенных численных решений имело расчетную схему из 160 000 конечных элементов, динамическое решение задачи носит явно выраженный волновой характер решения. В примерах приведены данные о восстановлении значений упругих перемещений, скоростей и напряжений. Основной вывод, который можно сделать из работы, заключается в том, что предлагаемый вариант контроля численных методов может быть эффективно использован, особенно для задач, решение которых носит волновой характер.

Об авторах

Алексей Владимирович Штейн

Российский университет транспорта

Email: avsh7714@yandex.ru
ORCID iD: 0009-0003-2232-5121
SPIN-код: 3150-4438

доцент кафедры строительной механики

Москва, Россия

Владимир Борисович Зылев

Российский университет транспорта

Автор, ответственный за переписку.
Email: zylevvb@ya.ru
ORCID iD: 0000-0001-5160-0389

доктор технических наук, заведующий кафедрой строительной механики

Москва, Россия

Список литературы

  1. Karimi Y., Rashahmadi S., Hasanzadeh R. The effects of Newmark method parameters on errors in dynamic extended finite element method. International Journal of Engineering, Transactions A: Basics. 2018;31(1):50–57. https://doi.org/10.5829/ije.2018.31.01a.08
  2. Pasetto M., Waisman H., Chen J.S. A waweform relaxation Newmark method for structural dynamics problems. Computational Mechanics. 2019;63(6):1223–1242. https://doi.org/10.1007/s00466-018-1646-x
  3. Ma K., Du J., Liu Ya. Noninear dynamic behavior analysis of closed-loop self-excited crankshaft model using improved Newmark — β method. Nonlinear Dynamics. 2023;111(6):1223–1242. https://doi.org/10.1007/s11071-022-08100-3
  4. Ye Sh., Xue T., Zhang W. Multi-stage displacement analysis based on real-time dynamic slider method. Soil Dynamics and Earthquake Engineering. 2023;174(6):108209. https://doi.org/10.1016/j.soildyn.2023.1082
  5. Soltanieh G., Kabir M.Z., Shariyat M. Improvement of the dynamic instability of shallow hybrid composite cylindrical shells under impulse loads using shape memory alloy wires. Composites Part B: Engineering. 2019;167:167–179. https://doi.org/10.1016/j.compositesb.2018.12.040
  6. Bezhentseva M.V., Vutsin L.I., Kibets A.I., Krushka L. Finite element method for numerical modeling of elasticplastic deformation of wood under shock loading. Problems of strength and plasticity. 2020;82(4):428–441. (In Russ.) https://doi.org/10.32326/1814-9146-2020-82-4-428-441
  7. Bakushinsky A.B., Leonov A.S. Multifrequency inverse problem of scalar acoustics: remarks on nonuniqueness and solution algorithm. Journal of Mathematical Sciences. 2023;274(4):460–474. https://doi.org/10.1007/s10958-023- 06613-9
  8. Kasenov S., Askerbekova Ja., Tleulesova A. Algorithm construction based on the gradient method of one inverse problem for the acoustics equation. Eastern-European Journal of Enterprise Technologies. 2022;2(5):43–52. https://doi.org/10.15587/1729-4061.2022.253568
  9. Belai O.V., Podivilov E.V., Frumin L.L., Shapiro D.A. Inverse scattering problem for the wave equation in a onedimensional inhomogeneous medium. Optoelectronics, Instrumentation and Data Processing. 2009;45(6):546–553. https://doi.org/10.3103/S8756699009060090
  10. Symes W.W., Chen H., Minkoff S.E. Solution of an acoustic transmission inverse problem by extended inversion. Inverse Problems. 2022;38(11):115003. Available from: https://arxiv.org/pdf/2201.08891 (accessed: 10.12.2023).
  11. Zylev V.B., Shtein A.V. Numerical solution of the problem of nonlinear oscillations of a system of threads. Structural Mechanics and Analysis of Constructions. 1986;6:58–61. (In Russ.)
  12. Zylev V.B. Computational methods in nonlinear mechanics of structures. Moscow: NIC “Inzhener” Publ.; 1999. (In Russ.) ISBN 5-8208-0012-5
  13. Alexandrov A.V., Potapov V.D., Zylev V.B. Construction mechanics. In 2 books. Book 2. Dynamics and stability of elastic systems. Moscow: Vysshaya shkola Publ.; 2008. (In Russ.) ISBN: 9785060053579
  14. Zylev V.B., Grigoriev N.A., Alferov I.V. About the acceleration of points of elastic bodies in collisions. Structural Mechanics and Analysis of Constructions. 2019;2(283):59–61. (In Russ.) EDN: DJHVAE

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».