Stages of Resistance of Reinforced Concrete Frames in Accidental Design Situation
- Autores: Savin S.Y.1
-
Afiliações:
- Moscow State University of Civil Engineering (National Research University)
- Edição: Volume 21, Nº 4 (2025)
- Páginas: 321-333
- Seção: Analysis and design of building structures
- URL: https://bakhtiniada.ru/1815-5235/article/view/349860
- DOI: https://doi.org/10.22363/1815-5235-2025-21-4-321-333
- EDN: https://elibrary.ru/CGZOGJ
- ID: 349860
Citar
Resumo
The study addresses the stress-strain state stages of reinforced concrete frames in zones of potential local collapse due to failure of a vertical element, such as a column or pylon. The paper provides initial assumptions about the mechanisms of secondary failure propagation in multi-storey reinforced concrete building frames, depending on the initial local collapse scenario. Based on these assumptions, the paper formulates force and deformation criteria for the stress-strain state stages of reinforced concrete building frames in the zone of potential local collapse. Using energy balance conditions, simplified relations were developed to estimate the ultimate static load for compressive arch and catenary actions of floor slab structures. The calculated force and deformation criteria values were compared with the experimental values. These comparisons demonstrate that the accuracy of the proposed relations is acceptable for engineering calculations.
Sobre autores
Sergei Savin
Moscow State University of Civil Engineering (National Research University)
Autor responsável pela correspondência
Email: suwin@yandex.ru
ORCID ID: 0000-0002-6697-3388
Código SPIN: 1301-4838
Candidate of Technical Sciences, Associate Professor of the Department of Reinforced Concrete and Masonry Structures
26 Yaroslavskoe shosse, Moscow, 129337, Russian FederationBibliografia
- Pham A.T., Tan K.H. Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading. Engineering Structures. 2017;139:31-45. http://doi.org/10.1016/j.engstruct.2017.02.002
- Kolchunov V.I., Savin S.Yu. Resistance of reinforced concrete frames to progressive collapse at catenary action of beams. Reinforced Concrete Structures. 2024;6(2):43-53. http://doi.org/10.22227/2949-1622.2024.2.43-53 EDN: FCSSTT
- Almusallam T., Al-Salloum Y., Elsanadedy H., Tuan N., Mendis P., Abbas H. Development limitations of compressive arch and catenary actions in reinforced concrete special moment resisting frames under column-loss scenarios. Structure and Infrastructure Engineering. Taylor & Francis. 2020;16(12):1616-1634. http://doi.org/10.1080/15732479.2020.1719166 EDN: DBUUUL
- Adam J.M., Buitrago M., Bertolesi E., Sagaseta Ju., Moragues Ju.J. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures. 2020;210:110414. http://doi.org/10.1016/ j.engstruct.2020.110414 EDN: POAKZI
- Pham A.T., Brenneis Ch., Roller Ch., Tan K.H. Blast-induced dynamic responses of reinforced concrete structures under progressive collapse. Magazine of Concrete Research. 2022;74(16):850-863. http://doi.org/10.1680/jmacr.21.00115 EDN: VPPOYT
- Kolchunov V.I., Fedorova N.V., Savin S.Y., Kaydas P.A. Collapse behavior of a precast reinforced concrete framse system with layered beams. Buildings. 2024;14(6):1776. http://doi.org/10.3390/buildings14061776 EDN: YCLTNL
- Savin S.Yu. Levels of stress-strain state of reinforced concrete frame structures under accidental impacts. News of Higher Educational Institutions. Construction. 2025;(6):5-21. (In Russ.) http://doi.org/10.32683/0536-1052-2025-798-6-5-21 EDN: NCVLTU
- Lu X., Lin K., Li Ch., Li Y. New analytical calculation models for compressive arch action in reinforced concrete structures. Engineering Structures. 2018;168:721-735. http://doi.org/10.1016/j.engstruct.2018.04.097
- Wang S., Peng J., Kang S.-B. Evaluation of compressive arch action of reinforced concrete beams and development of design method. Engineering Structures. 2019;191:479-492. http://doi.org/10.1016/j.engstruct.2019.04.083
- Yu J., Tan K.H. Analytical model for the capacity of compressive arch action of reinforced concrete sub-assemblages. Magazine of Concrete Research. 2014;66(3):109-126. http://doi.org/10.1680/macr.13.00217
- Tao Y., Huang Y., Yi W. Analytical model for compressive arch action in unbonded prestressed concrete beam-column subassemblages under a column-loss scenario. Engineering Structures. 2022;273:115090. http://doi.org/10.1016/j.engstruct.2022.115090 EDN: BRWNPM
- Xi Zh., Zhang Zh., Qin W., Zhang Pu. Experiments and a reverse-curved compressive arch model for the progressive collapse resistance of reinforced concrete frames. Engineering Failure Analysis. 2022;135:106054. http://doi.org/10.1016/ j.engfailanal.2022.106054 EDN: TTXIRJ
- Savin S.Yu., Kolchunov V.I. Robustness check of reinforced concrete frames at initial localized failure. News of Higher Educational Institutions. Construction. 2024;(10):50-64. (In Russ.) http://doi.org/10.32683/0536-1052-2024-790-10-50-64 EDN: UHMOLJ
- Fyodorova N., Korenkov P. Static and dynamic deformation of monolithic reinforced concrete frame building in ultimate limit and beyond limits states. Building and Reconstruction. 2016;6(68):90-100. (In Russ.) EDN: XBKCCV
- Iliushchenko T.A., Kolchunov V.I., Fedorov S.S. Crack resistance of prestressed reinforced concrete frame structure systems under special impact. Building and Reconstruction. 2021;93(1):74-84. (In Russ.) http://doi.org/10.33979/2073-7416-2021-93-1-74-84 EDN: JVKPHT
- Fedorova N., Vu N.T. Deformation criteria for reinforced concrete frames under accidental actions. Magazine of Civil Engineering. 2022;109(1). http://doi.org/10.34910/MCE.109.2 EDN: XPYFGL
- Fedorova N.V., Ngoc V.T. Deformation and failure of monolithic reinforced concrete frames under special actions. Journal of Physics: Conference Series. 2019;1425(1):012033. http://doi.org/10.1088/1742-6596/1425/1/012033 EDN: SPPYUZ
- Kolchunov V.I., Moskovtseva V.S. Robustness of reinforced concrete frames with elements experiencing bending with torsion. Engineering Structures. 2024;314:118309. http://doi.org/10.1016/j.engstruct.2024.118309 EDN: PNBEQJ
- Savin S., Kolchunov V., Fedorova N., Tuyen Vu N. Experimental and numerical investigations of RC frame stability failure under a corner column removal scenario. Buildings. 2023;13(4):908. http://doi.org/10.3390/buildings13040908 EDN: XFEVTO
- Choi H., Kim J. Progressive collapse-resisting capacity of RC beam-column sub-assemblage. Magazine of Concrete Research. 2011;63(4):297-310. http://doi.org/10.1680/macr.9.00170
- Bažant Z.P., Verdure M. Mechanics of progressive collapse: Learning from world trade center and building demolitions. Journal of Engineering Mechanics. 2007;133(3):308-319. http://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(308)
- Tur V.V., Tur A.V., Lizahub A.A. Checking of the robustness of precast structural systems based on the energy balance method. Monthly Journal on Construction and Architecture. 2021;16(8):1015-1033. (In Russ.) http://doi.org/10.22227/1997-0935.2021.8.1015-1033 EDN: CZLNAM
- Geniev G.A. On dynamic effects in rod systems made of physical non-linear brittle materials. Industrial and Civil Engineering. 1999;(9):23-24. (In Russ.) EDN: ZCGTGX
- Savin S.Yu., Fedorova N.V. Comparison of methods for analysis of structural systems under sudden removal of a member. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):329-340. (In Russ.) http://doi.org/
- 22363/1815-5235-2022-18-4-329-340 EDN: WHZYBW
Arquivos suplementares


