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Аннотация. Установлено квазилинейное представление нелинейного реологического уравнения состояния бетона, выве-
денного на основе концепции статистического распределения прочности отдельных фракций, в объединении образующих 
элемент конструкции. В нелинейной постановке для нестареющего бетона известный принцип Л. Больцмана суперпози-
ции деформаций ползучести реализуется по приращениям структурного напряжения способных к силовому сопротивле-
нию фракций при неубывающем нагружении. Для стареющего бетона в отличие от предшествующих подходов реализова-
но наложение частичных приращений деформаций, порожденных приращениями уровня напряжений. Это приводит к 
корректному учету старения бетона, уточняющему вид известных реологических уравнений. Приведены удобные в при-
ложениях квазилинейные формы реологических уравнений. Концепция прочностной структуры бетона и идентичность 
функций старения прочности, модуля упругости и ползучести позволяют сведение уравнения ползучести к линейному 
дифференциальному уравнению с постоянными коэффициентами. Это упрощает, в частности, решение задач релаксации 
напряжений, значимых в расчетах конструкций на долгосрочную безопасность. 
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Abstract. A quasilinear representation of a nonlinear rheological equation of concrete state has been established, derived on the 
basis of the concept of statistical strength distribution of individual fractions combined to form a structural element. In the 
nonlinear formulation for ageless concrete, L. Boltzmann’s well-known principle of superposition of creep deformations is realized 
by increments of structural stress of fractions capable of force resistance under non-decreasing loading. For aging concrete, in 
contrast to previous approaches, the superposition of partial increments of deformations generated by increments in stress levels is 
implemented. This leads to the correct consideration of concrete aging, clarifying the type of known rheological equations. 
Quasilinear forms of rheological equations that are convenient in applications are given. The concept of the strength structure of 
concrete and the identity of the aging functions of strength, modulus of elasticity and creep make it possible to reduce the creep 
equation to a linear differential equation with constant coefficients. This simplifies, in particular, the solution of stress relaxation 
problems, which are important in the calculations of structures for long-term safety. 
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1. Введение 

Уравнения механического состояния значимы в теории бетона, и им посвящено большое коли-
чество работ, отраженных частично в [1; 2]. Эти уравнения представляют теоретические обоснова-
ния экспериментально выявленных при эталонных нагружениях феноменологических зависимостей. 
В неравновесном процессе силового деформирования существенную роль играет явление прироста 
деформации при постоянном напряжении, называемое ползучестью. Учет ползучести бетона, есте-
ственно, приводит к реологическим уравнениям состояния. Традиционный вывод этих уравнений 
использует принцип наложения деформаций и заключается в суммировании в некоторый момент t  
частичных приращений ( )ε ,τcr itΔ  деформаций ползучести, порожденных частичными приращениями 

( )σ τiΔ  напряжения ( )σ τ  в последовательные предыдущие моменты времени τi . В линейной теории 

ползучести идеального (нестареющего) бетона принцип наложения известен как принцип супер-
позиции Л. Больцмана [3] — деформация ( )ε ,τcr itΔ  определяется напряжением ( )σ τiΔ  и его про-

должительностью ( )τit −  и не зависит от ( )σ τ jΔ  и ( )τ jt −  при i j≠ . Взаимонезависимость деформа-

 
Evgeny A. Larionov, Doctor of Technical Sciences, Professor of the Department of Construction Technology and Structural Materials, Engineering 
Academy, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; eLIBRARY AuthorID: 365207, ORCID: 0000-0002-4906-
5919; e-mail: evgenylarionov39@yandex.ru 
Vladimir P. Agapov, Doctor of Technical Sciences, Professor of the Department of Construction Technology and Structural Materials, Academy of 
Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; eLIBRARY SPIN-code: 2422-0104, ORCID: 0000-0002-
1749-5797; e-mail: agapovpb@mail.ru 
Alexey S. Markovich, Doctor of Technical Sciences, Associate Professor of the Department of Construction Technology and Structural Materials, Academy 
of Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; Professor of the Department of Metal and Timber 
Structures, National Research Moscow State University of Civil Engineering, 26 Yaroslavl Highway, Moscow, 129337, Russian Federation; eLIBRARY 
SPIN-code: 9203-1434, ORCID: 0000-0003-3967-2114; e-mail: markovich-as@rudn.ru 
Kurban R. Aidemirov, PhD, Associate Professor, Associate Professor of the Department of Building Structures and Hydraulic Structures, Dagestan State 
Technical University, 70, I. Shamily avenue, Makhachkala, 367026, Russian Federation; eLIBRARY SPIN-code: 8167-4343, ORCID: 0009-0005-1474-
4275; e-mail: kyrayd@mail.ru 

https://orcid.org/0000-0002-4906-5919
https://orcid.org/0000-0002-4906-5919
https://orcid.org/0000-0002-1749-5797
https://orcid.org/0000-0002-1749-5797
https://orcid.org/0000-0003-3967-2114
https://orcid.org/0000-0003-3967-2114
https://orcid.org/0009-0005-1474-4275
https://orcid.org/0009-0005-1474-4275


Larionov E.A. et al. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):414–431 
 

 

416 ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS 

ций ( )ε ,τcr itΔ  позволяет нахождение отвечающего приращению напряжения ( ) ( )
1

0
0

σ , σ τ
n

i
i

t t
−

=
Δ = Δ  

полного приращения ( )0ε ,cr t tΔ  деформации ползучести суперпозицией (наложением) ( )ε ,τcr itΔ : 

( ) ( ) ( ) ( )
1 1

0 0
0 0

ε , ε ,τ ,τ σ τ
n n

cr cr i i i
i i

t t t C t
− −

= =
Δ = Δ = Δ  , (1) 

где ( )0 ,τiC t  — мера ползучести идеального бетона в момент t  при нагружении в момент τi . 

При постоянном модуле упругости E  приращению ( )0σ ,t tΔ  отвечает приращение мгновенной 

деформации: 

( ) ( )1

0
0

σ τ
σ ,

n i
el

i
t t

E

−

=

Δ
Δ =  . (2) 

Согласно (1) и (2) получим равенство 

( ) ( ) ( )
1

0 0
0

1
ε , ,τ σ τ

n
i i

i
t t C t

E

−

=

 Δ = + Δ  
 , (3) 

выражающее принцип наложения деформаций в наследственной теории ползучести Больцмана 
– Вольтерра.  

Предельный переход в (3) позволяет получить выражение 

( ) ( ) ( ) ( )
0

0
0 0

σ ,
ε , ,τ σ τ

t

t

t t
t t C t d

E
Δ

Δ = +  . (4) 

Добавление к ( )0ε ,t tΔ  деформации ( ) ( )0 0
1

,τ σiC t t
E
 +  

 приводит к уравнению 

( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0
σ

ε , ,τ σ τ , σ
t

t

t
t t C t d C t t t

E
= + + ,  

преобразующемуся к виду 

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t

t

t C t
t t d

E
∂

= −
∂ . (5) 

Для стареющего бетона принимается мера ползучести 

( ) ( ) ( )*
0, τ , τC t t C t= Θ ,    ( ) ( ) ( )0 0,τ ,28 ,τC t C f t= ∞ , (6) 

где ( )tΘ  — функция старения; ( )0 ,28C ∞  — предельная мера ползучести ( )0 ,τC t  при 0 28t =  суток; 

( ),τf t  — функция накопления деформаций ползучести, причем  

( ) ( )0γ,τ 1 t tf t ke− −= − ,  

где 0 1k< ≤ , γ  — эмпирический коэффициент. 

Зависимость функции ( ),τf t  от аргумента ( )τt −  определяется природой запаздывающих 

деформаций ползучести. 
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Решением дифференциального уравнения  

( ) ( ) ( )
*

*,τ
γ ,τ ,τ

dC t
C C t

dt
 = ∞ −  , (7) 

отражающего пропорциональность скорости затухания деформаций ползучести ее дефициту, являет-
ся функция  

( ) ( )0γ, τ 1 t tf t e− −= − . (8) 

З а м еч а н и е .  Полагая 1k <  в функции ( ),τf t , при τ t=  получим 

( ) ( ) ( )( )*
0, ,28 1 0.C t t t C k= Θ ∞ − ≠  

Это соответствует наличию так называемой кратковременной ползучести, что противоречит инерци-

онной природе запаздывающих деформаций ползучести. Вместе с тем соотношение ( )* , 0C t t ≠  кор-

релирует с экспериментально наблюдаемым начальным всплеском кривой ползучести, рассматрива-
емым как следствие быстро натекающей ползучести. 

В [4; 5] для стареющего бетона по аналогии с уравнением Больцмана – Вольтерра предлагается 
линейное реологическое уравнение  

( ) ( )
( ) ( ) ( )

0

*

0
σ ,τ

ε , σ τ τ
τ

t

t

t C t
t t d

E t
∂

= −
∂ . (9) 

А.А. Гвоздев, принимая линейную зависимость для мгновенной деформации ( ) ( )
( )

σ
εel

t
t

E t
= , 

полагал, что ползучесть состоит из линейной части ( ) ( ) ( )
0

*
0ε , ,τ σ τ

t
l
cr

t
t t C t d=   и нелинейной части 

( ) ( ) ( )
0

0ε , ,τ,σ σ τ
t

nl
cr

t
t t L t d=  , порожденной структурными повреждениями [2]. 

В.М. Бондаренко, наряду с деформацией ползучести ( )0ε ,cr t t , полагал нелинейной зависимость 

и мгновенной деформации ( )εel t  от ( )σ t  и вывел нелинейное реологические уравнение [1] 

( ) ( )
( ) ( ) ( )

0

*

0
,τ

ε , τ τ
τ

t
el

cr
t

S t C t
t t S d

E t
∂

= −
∂ , (10) 

где ( )elS t  и ( )τcrS  — нелинейные функции напряжений, порождающие мгновенные и запаздываю-

щие деформации соответственно. 
В [6; 7] на основе концепции прочностной структуры бетона получена модификация принципа 

суперпозиции Л. Больцмана и выведено нелинейное реологическое уравнение с единой для мгно-
венных и запаздывающих деформаций функцией напряжений ( )S t .  

Согласно концепции прочностной структуры величина ( )τS  представляет напряжение ( )σ τstr , 

способных к силовому сопротивлению фракций бетонного элемента, названного в [6] структурным. 

При этом ( ) ( ) ( )0σ τ τ σ τstr S= , ( )0 τS  является нелинейной функцией уровня напряжений 
( )
( )

σ τ
η

τR
=  и 

выводится нелинейное реологическое уравнение [7–9] 
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( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
σ ,τ

ε , τ σ τ τ
τ

t

t

S t t C t
t t S d

E t
∂

= −
∂ . (11) 

При допущении равенств ( ) ( ) ( )0 σel elS t S t t=  и ( ) ( ) ( )0τ τ σ τcr crS S=  уравнение (10) приводится 

к виду 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
σ ,τ

ε , τ σ τ τ
τ

t
el

cr
t

S t t C t
t t S d

E t
∂

= −
∂ . (12) 

В приложениях удобна квазилинейная форма нелинейных уравнений, означающая представле-

ние деформации ( )0ε ,t t  как произведение порожденной напряжением ( )σ τ  деформации ( )0ε ,el t t  на 

множитель квазилинейности ( )0Ŝ t :  

( ) ( ) ( ) ( )
( )
( )

( )
0

*
0

0
σ τ ,τ1ˆε , σ τ
σ τ

t

t

C t
t t S t t d

E t t

 ∂ = −
∂  

 . (13) 

Из равенств (12) и (13) явствует, что ( )0Ŝ t  есть решение уравнения 

( ) ( ) ( )
( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

* 0 *
0 0σ τ ,τ σ ,τ1ˆ σ τ τ σ τ τ
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  . (14) 

В [10; 11] полагают ( ) ( )1 η elmo
el elS t V t= +    , ( ) ( )1 η crmo

cr crS t V t= +    , ( ) ( ) ˆ0ˆ ˆ1 η
mS t V t= +    . Пара-

метры V̂  и m̂  определяют согласно (14) при ( )σ τ R=  и ( )σ τ γR= , 0,6 γ 0,8≤ ≤  и предъявляют ра-
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ε ,

,

m

ep
l

V t t
t t

E t t

+   
=  (15) 

как квазилинейное представление нелинейного уравнения (12),  

где  ( ) ( )
( )
( )

( )
0

1
*

0
σ τ ,τ1

, τ
σ τ

t
ep
l

t

C t
E t t d

E t t

−
 ∂ = −

∂  
  — временный линейный модуль деформаций.  

Функция ( ) ( ) ˆˆη 1 η
mf t V t  = +       является грубой аппроксимацией решения ( )0Ŝ t  уравнения 

(14), и равенство (15) не выражает квазилинейное представление уравнения (12). 
Таким образом, возникает задача корректного квазилинейного представления уравнений (11) 

и (12).  
Уравнение (9) в [4; 5] выводится по приведенной выше схеме наложением деформаций 

( ) ( ) ( )*ε , τ ,τ σ τcr i i it C tΔ = Δ . При этом не учитывается прочность бетона ( )τiR  в момент приложения 

напряжения ( )σ τiΔ , что приводит к некорректному ядру ползучести в [12; 13]. 

Задача уточнения известных уравнений модификацией принципа суперпозиции Л. Больцмана 
реализуется в контексте. 
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З а м еч а н и е .  Нелинейные относительно ( )σ τ  уравнения состояния бетона являются линей-

ными относительно ( )σ τstr , и в релаксационных задачах нахождение ( )0σstr t  осуществляется извест-

ными методами, а напряжение ( )0σ t  определяется решением уравнения 
( )
( ) ( ) ( )0 0σ

σ σstr
t

S t t
R t
 

= 
  

 

[14; 15]. 
Идентичность функций старения меры ползучести и модуля упругости позволяет сведение ин-

тегрального уравнения состояния к линейному дифференциальному уравнению с постоянными ко-

эффициентами относительно деформации ( ) ( )
( )

σ
ε str

el
t

t
E t

= . Решение ( )0εel t  этого уравнения опреде-

ляет ( ) ( ) ( )0 0σ εstr elt E t t= . 

2. Линейные реологические уравнения состояния 

Физико-механические процессы влекут изменение показателей прочности ( )τR , упругости 

( )τE  и меры ползучести ( )* , τC t . 

На основе экспериментальных данных [16] выявлена общность функций старения этих показа-
телей и установлено равенство [17]  

( ) ( )
( )
28

τ
τ

R
R

Θ = . (16) 

При постоянном на интервале ( ),τt  напряжении ( )σ τ  

( ) ( ) ( ) ( )0ε ,τ τ ,τ σ τcr t C t= Θ ,  

или 

( ) ( ) ( )0 ˆε ,τ ,τ σ τcr t C t= ,    ( ) ( ) ( )σ̂ τ τ σ τ= Θ , (17) 

и согласно (11) 

( ) ( ) ( ) ( )0ε ,τ ,τ 28 η τcr t C t R= , (18) 

где ( ) ( )
( )

σ τ
η τ

τR
=  — уровень напряжений, ( )σ̂ τ  — приведенное к моменту τ  его приложения напря-

жение, ( ) ( ) ( )σ̂ τ 28 η τR= . 

Приращение уровня напряжений ( )τiηΔ  порождает приращение деформаций ползучести 

( ) ( ) ( ) ( ) ( ) ( )0 0ˆε ,τ ,τ σ τ ,τ 28 η τcr i i i i it C t C t RΔ = Δ = Δ . (19) 

Полагая в линейной постановке зависимость приращения лишь от величины ( )σ̂ τiΔ  и его дли-

тельности, получим аналогичное (19) равенство 

( ) ( ) ( )
1

0 0
1

ˆε , ,τ σ τ
n

cr i i
i

t t C t
−

=
Δ = Δ , (20) 

а переходя к пределу: 
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( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0 0ˆε , ,τ σ τ ,τ 28 η τ
t t

cr
t t

t t C t d C t R dΔ = =  . (21) 

Поскольку ( ) ( ) ( ) ( ) ( )σ̂ τ τ τ σ τ τ τd d dσ= Θ + Θ , то  

( ) ( ) ( ) ( ) ( ) ( )
0 0

*
0 0ε , ,τ σ τ ,τ σ τ τ τ

t t
cr

t t
t t C t d C t dΔ = + Θ   . (22) 

Интегрируя первый интеграл по частям, получим 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

*
*

0 0 0 0
,τ

ε , , σ σ τ τ ,τ σ τ τ τ
τ

t t
cr

t t

C t
t t C t t t d C t d

∂
Δ = − − + Θ

∂   . (23) 

Учитывая, что 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

*
0

0
,τ ,τ

σ τ τ τ σ τ τ ,τ σ τ τ τ
τ τ

t t t

t t t

C t C t
d d C t d

∂ ∂
= Θ + Θ

∂ ∂      

и уравнение (22), имеем 

( ) ( ) ( ) ( ) ( ) ( )
0

0*
0 0 0

,τ
ε , , σ τ σ τ τ

τ

t
cr

t

C t
t t C t t t d

∂
Δ = − − Θ

∂ ,  

а, добавляя начальную деформацию, получим 

( ) ( ) ( ) ( )
0

0
0

,τ
ε , τ σ τ τ

τ

t
cr

t

C t
t t d

∂
= − Θ

∂ . (24) 

Сумма ( ) ( ) ( )0 0ε , ε ε ,el crt t t t t= +  представляет собой линейное реологическое уравнение состоя-

ния бетона наследственной теории старения. Таким образом, 

( ) ( )
( ) ( ) ( ) ( )

0

0
0

σ ,τ
ε , τ σ τ τ

τ

t

t

t C t
t t d

E t
∂

= − Θ
∂ . (25) 

З а м еч а н и е .  Для меры ползучести ( ) ( ) ( )*
0, τ τ , τC t C t= Θ  уравнение (9) представлено в виде 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

0
0 0

σ ,τ
ε , τ σ τ τ ,τ σ τ τ τ

τ

t t

t t

t C t
t t d C t d

E t
∂

= − Θ − Θ
∂   . (26) 

Различие уравнений (9) и (25) возникает из-за учета при выводе уравнения (25) не только вели-

чины приращения напряжения ( )σ τiΔ , но и прочности ( )τiR  в момент его приложения. Этот учет 

реализуется при наложении частичных приращений деформации ползучести ( )ε ,τcr itΔ  согласно ра-

венству (19), выражающему модификацию принципа суперпозиции Л. Больцмана [3]. 

З а м еч а н и е .  Для старого бетона величина ( )τ 0Θ ≈  и допустимо пренебречь последним сла-

гаемым в уравнении (26). 



Ларионов Е.А. и др. Строительная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 414–431 
 

 

АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА КОНСТРУКЦИЙ  421 

Наряду с применением принципа наложения частичных приращений деформаций ползучести 
величину ( )0ε ,cr t tΔ  можно определить путем интегрирования полного дифференциала [14] 

( ) ( ) ( ) ( ) ( ) ( ) ( )* *
* * ,τ ,τ

,τ σ τ ,τ σ τ σ τ τ+
τ

C t C t
d C t C t d d dt

t

 ∂ ∂   = +  ∂ ∂  
 (27) 

функции ( ) ( ) ( )*ε , τ , τ σ τcr t C t= . 

Поскольку ( ) ( ) ( ) ( ) ( ) ( )
0 0

*
* *

0 0
,τ

,τ σ τ , σ σ τ τ
τ

t t

t t

C t
C t d C t t t d

∂
= − −

∂  , с учетом (8) в результате получим 

( ) ( ) ( ) ( ) ( ) ( )
0

0*
0 0 0

,τ
ε , , σ τ σ τ τ

τ

t
cr

t

C t
t t C t t t d

∂
Δ = − − Θ

∂   

и добавлением деформаций ( ) ( )*
0 0, σC t t t  и 

( )
( )

σ t
E t

, приходим к уравнению (25). 

З а м еч а н и е .  Предлагаемый способ представляет другой подход для вывода уравнения состо-

яния (25) и формально реализует принцип наложения частичных деформаций 
( )
( )

σ τi
E t

Δ
 и 

( ) ( ) ( )0 ,τ 28 τi iC t R ηΔ  с учетом эволюции модуля упругости ( )E t и прочности ( )R t . 

З а м еч а н и е .  Представлением деформаций ( ) ( ) ( ) ( )*1
ε ,τ ,τ σ τt C t

E t
 

= + 
  

 в виде 

( ) ( ) ( ) ( )1
ε ,τ ,τ σ τ

τ
t C t

E
 

= + 
  

 вводится мера ползучести ( ),τC t , не учитывающая эволюцию модуля 

упругости ( )τE . Это обстоятельство влечет следующее соотношение между мерами ползучести 

( )* ,τC t  и ( ),τC t : 

( ) ( ) ( ) ( )
* 1 1

,τ ,τ
τ

C t C t
E E t

= + − . (28) 

Согласно (28) уравнение (9) приобретает вид 

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

0
σ ,τ 1

ε , σ τ τ σ τ τ
τ τ τ

t t

t t

t C t
t t d d

E t E
 ∂ ∂= − −  ∂ ∂   

  . (29) 

Неизбежно возникающее при подстановке соотношения (28) в уравнение (9) слагаемое 

( ) ( )
0

0
1

σ τ τ
τ τ

t

t
J d

E
 ∂= −  ∂   

  в работе [12] ошибочно объявлено лишним, что послужило поводом для 

заявления «Принцип наложения как основополагающая ошибка в теории ползучести…» [13]. 

3. Нелинейные реологические уравнения состояния 

Согласно двухкомпонентной ползучести по А.А. Гвоздеву [2] при одноосном напряженном со-
стоянии 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

max

0 0

σ

0
0

σ ,τ1
ε , σ τ τ σ τ τ σ σ, σ

τ τ τ

t t

t t

t С t
t t d d f F T t d

E t E
  ∂∂= − − −     ∂ ∂  

   , (30) 

где ( )σf  — нелинейная функция напряжений, ( )σ,F T t    — функция от суммарной длительности 

( )σ,T t  напряжений к моменту t . 

В [4] для нелинейной теории предлагается уравнение  

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

0
σ ,τ1

ε , σ τ τ τ τ
τ τ τ

t t

t t

t С t
t t d f d

E t E
σ

  ∂∂= − −     ∂ ∂  
  . (31) 

Нелинейное реологическое уравнение состояния бетона впервые вывел В.М. Бондаренко [1]. 

Представленные в (10) функции ( )ηelS t    и ( )η τcrS     в виде ( ) ( ) ( )0η η σel elS S t=  и 

( ) ( ) ( )0η η σ τcr crS S=  преобразуют уравнение (10) в форму 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
η σ ,τ

ε , η σ τ τ
τ

t
el

cr
t

S t С t
t t S d

E t
∂

= −
∂ . (32) 

В отличие от традиционного подхода бетон рассматривается как объединение твердых фракций 
(зерен), соединенных упругими связями — цементными волокнами со статистически распределен-
ными прочностями. Концепция прочностной структуры позволяет обосновать принцип наложения 
деформаций в нелинейной постановке [6; 7]. 

Структурные повреждения при неубывающем нагружении ( )τN  порождают перераспределение 

напряжений с разрушенных связей на способные к силовому сопротивлению целые связи, увеличи-
вая их расчетное напряжение 

( ) ( )τ
σ τ

N
A

=  (33) 

до так называемого структурного напряжения  

( ) ( )
( )
τ

σ τ
τstr

N
A

= , (34) 

где ( )τA  — площадь нормального сечения целых (рабочих) в момент времени τ  связей и фракций. 

Согласно (33) и (34) 

( ) ( ) ( ) ( ) ( )0σ τ σ τ τ σ τ
τstr

A S
A

= = . (35) 

Функция ( ) ( )
0 τ

τ

AS
A

=  определяет меру увеличения расчетного напряжения ( )σ τ  до структур-

ного ( )σ τstr  в процессе постепенного разрушения части связей. Поскольку разрушение каждой свя-

зи в момент τ  зависит от ее прочности в этот момент, следовательно, мера ( )0 τS  является функцией 

от уровня напряжений ( ) ( )
( )

σ τ
η τ

τR
= . 
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Например, по П.И. Васильеву [18]: 

( ) ( )
( )

0 σ τ
τ 1

τ

m

S V
R
 

= +  
  

, (36) 

где V  и m  — эмпирические коэффициенты. 

Перераспределение напряжений влечет нелинейную зависимость деформаций ( )ε τ  от напряже-

ний ( )σ τ  и взаимозависимость частичных приращений деформации ползучести ( )ε ,τcr itΔ  [6], ибо 

эффект каждого догружения ( )σ τiΔ  определяется площадью рабочих фракций ( )τiA , зависящей от 

всех предшествующих догружений ( )σ τ jΔ , j i≤ . 

Реологическое уравнение описывает напряженно-деформированное состояние целых на про-

межутке ( )0,t t  связей и фракций, объединение которых образует рабочую часть tV  бетонного эле-

мента V . 

Приращение ( )σ τstr iΔ  не разрушает связи и фракции tV , и именно это влечет независимость 

приращений деформаций ползучести в момент τi : 

( ) ( ) ( )0ε ,τ ,τ σ τcr i i str it C tΔ = Δ  (37) 

от остальных приращений в момент τ j  ( )i j≠ , а потому 

( ) ( ) ( )
1

0 0
1

ε , ,τ σ τ
n

cr i str i
i

t t C t
−

=
Δ = Δ . (38) 

Соотношение (38) является аналогом принципа наложения Л. Больцмана в нелинейной поста-
новке и приводит к уравнениям состояния для нестареющего бетона 

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t
str

str
t

t С t
t t d

E
∂

= −
∂  (39) 

или  

( ) ( ) ( ) ( ) ( ) ( )
0

0
00

0
σ ,τ

ε , τ σ τ τ
τ

t

t

S t t С t
t t S d

E
∂

= −
∂ . (40) 

По аналогии с линейной постановкой получим нелинейное уравнение состояния для стареюще-
го бетона: 

( ) ( )
( ) ( ) ( ) ( )

0

0
0

σ ,τ
ε , τ σ τ τ

τ

t
str

str
t

t С t
t t d

E t
∂

= − Θ
∂ . (41) 

Расчетная модель структуры бетона в статистической теории прочности представляется набо-
ром зерен, соединенных неравновесными связями, прочность которых является случайной величи-
ной. Эта модель восходит к Вейбулу [19] и развита в [20; 21].  

Гипотеза, что в процессе нагружения ( )τN  связи деформируются линейно с одинаковым моду-

лем упругости, приводит к линейной диаграмме σ ε− . Экспериментальные диаграммы, для построе-

ния которых используются напряжения ( )σ τ , не зависящие от площади рабочих связей ( )τA , полу-
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чаются нелинейными. По концепции прочностной структуры бетона зависимость ( )σstr t  и ( )ε t  яв-

ляется линейной и отношение ( ) ( )
( )

σ
ε str t

t
E t

=  на диаграмме изображается прямой, названной в [22; 

23] фиктивной диаграммой. 
З а м еч а н и е .  С позиции прочностной структуры бетона эта прямая представляет графическую 

интерпретацию деформирования целых на отрезке [ ]0,t  связей при неубывающем нагружении. 

З а м еч а н и е .  При разгружении работают лишь целые связи и экспериментально построенный 
параллельный фиктивной (согласно [22; 23]) диаграмме отрезок подтверждает линейную зависи-

мость ( )σstr t  от ( )ε t . 

4. Квазилинейные представления уравнений состояния 

Согласно равенствам ( ) ( ) ( ) ( ) ( )*
0 ,τ ,τ

τ σ τ σ τ
τ

C t C t
t

∂ ∂
Θ = −

∂ ∂
 и ( ) ( ) ( )0σ τ τ σ τstr S=  уравнения (25) и 

(41) представлены в виде 

( ) ( ) ( )
( )
( )

( )
0

*

0
σ τ , τ1

ε , σ τ
σ

t

t

C t
t t t d

E t t t

 ∂ = +
∂  

 , (42) 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )
0

0 *
0

0 0

τ σ τ ,τ1
ε , σ τ

σ

t

t

S С t
t t S t t d

E t tS t t

 ∂ = +
∂  

 . (43) 

Введем величины ( )0δ ,l t t  и ( )0δ ,nl t t , представляющие собой линейные и нелинейные податли-

вости соответственно. Тогда на основании уравнений (42) и (43) получим временные упругопласти-
ческие модули в линейной и нелинейной поставках: 

( ) ( ) ( )
( )
( )

( )
0

1
*

0
0

σ τ ,τ1 1
, τ

σδ ,

t
ep
l

l t

C t
E t t d

E t t tt t

−
 ∂ = = +

∂  


 , (44) 

( ) ( ) ( )
( ) ( )
( ) ( )

( )
0

1
0 *

0 0
0

τ σ τ ,τ1 1
, τ

δ , σ

t
ep
nl

nl t

S С t
E t t d

E t tt t S t t

−
 ∂ = = +

∂  


 . (45) 

Уравнению (25), представленному в виде 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
0

0
0 0

σ τ ,τ1
ε , σ τ τ σ δ , ,

σ

t
l

t

C t
t t t d t t t

E t t t

 ∂ = − Θ =
∂  

  (46) 

соответствует временный линейный модуль  

( ) ( ) ( ) ( ) ( )
( )

( )
0

1

0
0

0

σ τ ,τ1 1
, τ τ

δ , σ τ

t
ep
l

l t

C t
E t t d

t t E t t

−
 ∂ = = − Θ

∂  
 , (47) 

а в нелинейной постановке — временный модуль 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
0

1
0

0
0 0

0

τ σ τ ,τ1 1
, τ τ

δ , τσ

t
ep
nl

nl t

S С t
E t t d

t t E t S t t

−
 ∂ = = − Θ

∂  
 . (48) 

Согласно (43) и (45) при суперпозиции по приращениям уровня напряжений 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
nl

S t t
t t

E t t
=


, (49) 

а при суперпозиции по приращениям напряжений 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
nl

S t t
t t

E t t
= . (50) 

Представления деформации ( )0ε ,t t в нелинейной постановке 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
l

S t t
t t

E t t
=



, (51) 

( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
=  (52) 

с соответствующими функциями квазилинейности ( )0S t  и ( )0Ŝ t  называются квазилинейными. 

При постоянном на отрезке [ ]0,t t  напряжении ( )σ τ  

( ) ( )0 0S t S t= ,   ( ) ( )0 0Ŝ t S t= , (53) 

а при неубывающем ( )σ τ  эти функции определяются из равенств 

( ) ( ) ( ) ( )0 0
0 0δ , δ ,l nlS t t t S t t t=  ,    ( ) ( ) ( ) ( )0 0

0 0
ˆ δ , δ ,l nlS t t t S t t t= . (54) 

Согласно (54) и равенствам (42)–(45) 

( ) ( ) ( )
( )

00 0

0

,

,

ep
l
ep
nl

E t t
S t S t

E t t
=





,    ( ) ( ) ( )

( )
00 0

0

,ˆ
,

ep
l
ep
nl

E t t
S t S t

E t t
= . (55) 

При неубывающем напряжении ( )σ τ  имеем ( ) ( )0 0τS S t< , а потому ( ) ( )0 0δ , δ ,nl lt t t t<   и 

( ) ( )0 0, ,ep ep
nl lE t t E t t>  . Аналогично получим ( ) ( )0 0, ,ep ep

nl lE t t E t t>  и с учетом (55)  

( ) ( )0 0S t S t< ,    ( ) ( )0 0Ŝ t S t< . (56) 

Согласно ( ) ( )0 0Ŝ t S t<  представление ( )0ε ,t t  в виде 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
l

S t t
t t

E t t
= , (57) 

предъявляемое как квазилинейное, получается из квазилинейного 
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( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
=  (58) 

заменой ( )0Ŝ t  на ( )0S t , что в силу (55) эквивалентно замене ( )0,ep
nlE t t  на ( )0,ep

lE t t . 

Равенством (57)  согласно (55) дается оценка величины ( )0ε ,t t  сверху. 

З а м еч а н и е .  При ( ) ( ) ( )
( )

0 0 σ τ
τ η τ 1

τ

m

S S V
R
 

=   = +   
  

 равенство (57) при напряжениях ( )σ τ , 

близких к ( )τR , является аппроксимацией квазилинейного представления.  

Идея квазилинейного представления деформации ( )0ε ,t t  для согласования уравнений с экспе-

риментальными данными принадлежит Ю.Н. Работнову [24], предложившему для нестареющего бе-
тона ( )( τE E= , ( ) )τ 1Θ =  уравнение  

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t

t

t C t
S t t d

E
∂

  = −  ∂ . (59) 

З а м еч а н и е .  В [24] принимается одинаковость функций нелинейности напряжений ( )τo
elS  и 

( )τo
crS . Это коррелирует с прочностной структурой бетона, согласно которой функции напряжений 

( )τelS  и ( )τcrS  представляют структурное напряжение ( ) ( ) ( )0σ τ τ σ τstr S= . Из ( ) ( )τ σ τel strS =  и 

( ) ( )τ σ τcr strS =  следует ( ) ( ) ( ) ( )0τ τ τ σ τel crS S S= = , а потому ( ) ( ) ( )0τ τ τel crS S S= = . 

В [1] функции ( )τelS  и ( )τcrS  принимаются в форме [18]: 

( ) ( )η τ 1 η τ emo
el eS V  = +      , (60) 

( ) ( )η τ 1 η τ cmo
cr cS V  = +      , (61) 

где eV , cV , em , cm  — эмпирические коэффициенты. 

Принятие в равенстве ( ) ( ) ( )0τ τ σ τcrS S=  функции ( )0 τS  в аналогичной форме (по П.И. Ва-

сильеву [18]) естественно, ибо ( ) ( )
0 τ

τ

AS
A

=  и соответствующая при напряжениях ( )σ τ  целым 

фракциям площадь ( )τA  определяется условием ( ) ( )τ σ τiR ≥ , что эквивалентно 
( )
( )

( )
( )

τ σ τ

τ τ
iR

R R
≥ . 

При постоянном на отрезке времени [ ]0,t t  напряжении ( )σ τ , согласно [1] 

( ) ( ) ( )
( ) ( ) ( ) ( )

0
* 0

0 0
η σ

ε , , η σel
cr

S t
t t С t t S t

E t
= + . (62) 

Полагая, что постоянное на ( )0,t t  напряжение ( ) ( ) ( )0σ τ η σ τstr S=  порождает такую же дефор-

мацию, получим 

( ) ( ) ( )
( ) ( ) ( ) ( )

0
* 0

0 0
η σ

ε , , η σ
S t

t t С t t S t
E t

= + . (63) 
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Согласно уравнениям (62) и (63) 

( ) ( ) ( ) ( )
( ) ( ) ( )

0
0 * * 0

0 0
η1

η , , ηel
cr

S
S С t t С t t S

E t E t
 

+ = + 
  

  

и  

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0 *
00

*
0

η η ,
η

1 ,

el crS S E t С t t
S

E t С t t

+
=

+
. (64) 

Из равенств (60), (61), (36) и (64) при η 1=  получим 

( ) ( ) ( ) ( )
( ) ( )

*
00

*
0

1 1 ,
1 1

1 ,

e cV V E t С t t
S V

E t С t t

+ + +
= + =

+
, (65) 

( )0 1 1V S= − . (66) 

При некотором 00< η 1<  имеем ( )0
0 0η η 1mV S= − , 

( )0
0

0
η 1

ηm S
V

−
= , 

( )
( )

0
0

0 0

η 1
lnη ln

1 1

S
m

S

−
=

−
 и 

( )
( )

0
0

0
0

η 11
ln

lnη 1 1

S
m

S

−
=

−
. (67) 

З а м еч а н и е .  Определенная по заданным функциям ( )ηo
elS  и ( )ηo

crS  функция ( )0 ηS  не обес-

печивает квазилинейное представление ( )0ε ,t t  при ( )σ τ const≠ . Кроме того, не исключено, что 

наблюдаемое различие eV  и cV , em  и cm  в уравнениях (60) и (61) принадлежит диапазону погреш-

ностей измерений. 
Согласно (59) имеет место равенство  

( ) ( )0 0ε , ε ,lS t t t t  =  . (68) 

При ( ) ( )
( )

0
0 0

ε ,
ε , l

el

t t
S t t

S t
  =  , где ( )0

elS t  (с учетом ( )E t E=  и ( )τ 1Θ = ) определяется вторым из ра-

венств (55), получим квазилинейное представление  

( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
= . (69) 

Для реологического уравнения состояния бетона [1]  

( ) ( ) ( ) ( ) ( )
( )
( )

( )0

0

*
ε , ε

0
σ τ ,τ1

ε , σ τ
σ τ

R
t

t t t

t

С t
e t t t d

E t t
−

 ∂ = −
∂  

 . (70) 

( ) ( ) ( ) ( )0ε , ε
0 0ε , ε ,Rt t t

lt t e t t=  и квазилинейное представление  
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( )
( ) ( ) ( )

( )
0ε , ε

0
0

σ
ε ,

,

Rt t t

ep
l

e t
t t

E t t
=  (71) 

при кратковременном нагружении, полагая ( )0ε , εt t = , ( )σ σt = , ( )R t R= , ( )0,ep
lE t t E= , согласно 

(71) получим функцию 

ε εσ ε RE e−= , (72) 

описывающую диаграмму σ ε−  (включая ниспадающую ветвь) в форме В.М. Бондаренко [1].  

При σ R=  имеем 1εRR E e−=  и εRE eR= , а потому 

ε εσ ε
ε

R

R

eR e−= ,    1 ε εσ ε

ε
R

R
e

R
−= . (73) 

Величины η  и ξ  являются уровнями напряжений и деформаций, а равенство 

1 ξη ξe −=  (74) 

представляет уравнение состояния бетона, описываемое в параметрах η  и ξ . 

При ( ) ( ) ( )1
0ε , ε0ˆ

m
Rm t t tS t e

−   =  диаграмма σ ε−  получается в виде ( )1 ε εε
σ

ε

m
Rm

R
E e

−
= [25], 

а параметрическое уравнение  

1 ξη ξ me
− −= . (75) 

Если диаграмма σ ε−  задается согласно ( )
1

σ ε ε
n i

i R
i

R a
=

=   [26], то соответствующее параметри-

ческое уравнение имеет вид 

1
η ξ

n i
i

i
a

=
=  . (76) 

Зависимость σ ε−  на плоскости в координатах ( )ε,σ  изображается графиком функции ( )σ εf= . 

Длительное нагружение описывается функцией ( )σ φ ,εt t=    , которой отвечает поверхность в коор-

динатах ( ),ε,σt . Ее пересечением с плоскостью τ t=  (параллельной плоскости ε σ− ) является кри-

вая tΓ , по которой, с учетом того, что ( ) ( )0ξ ε , εRt t t=  и ( ) ( )η σ t R t= , строится кривая tΓ  на плос-

кости ε σ− . Эта кривая описывает диаграмму σ ε− , а соответствующая функция ( )η ξF=  представ-

ляет собой параметрическое уравнение состояния. 
Таким образом, параметры η  и ξ  для неравновесного процесса деформирования являются ана-

логами параметров σ  и ε  для равновесных механических систем. 

З а м еч а н и е .  Структура параметрического уравнения, определяемая функцией ( )0Ŝ t , не зави-

сит от режима нагружения. Это позволяет по найденным при кратковременном нагружении значени-
ям η  и ξ  определить параметры ( ) ( )σ ηt R t=  и ( ) ( )0ε , ξεRt t t=  длительного нагружения. 

Параметрическое уравнение (74) при условии идентичности ( )0
elS t  и ( )0

crS t  вывел В.Г. Наза- 

ренко, рассматривая состояние бетона как состояние неравновесной термодинамической системы 
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[27]. Параметры η  и ξ , характеризующие прочностные и деформационные свойства бетона, связы-

ваются с помощью его удельной энергии целостности ( )W t  [28]. Величина ( )W t  является макси-

мальным энергетическим ресурсом сопротивления деформированию единицы объема бетона и пред-
ставляется площадью, ограниченной полной диаграммой σ ε−  фигуры. 

Адаптация теории ползучести к методу конечных элементов при формулировке уравнений пол-
зучести в приращениях выполнена в монографии [29]. 

5. Заключение 

В результате проведенного исследования авторами сделан ряд выводов. 
1. Наложением частичных приращений деформаций, порожденных последовательными прира-

щениями уровня напряжений, выведены уравнения механического состояния бетона. Учет прочно-
сти бетона в моменты приложения нагружения уточняет его известные уравнения состояния в ли-
нейной и нелинейной постановке. 

2. Общий для мгновенных и запаздывающих деформаций множитель нелинейности напряжений 
превышает множитель квазилинейности, умножением на который линейной части деформации по-
лучается ее квазилинейное представление. Делением нелинейной деформации на эти множители вы-
деляются соответственно обратимая и линейная ее части. 

3. Обратимые деформации реализуются целыми до момента начала разгружения связями за счет 
накопленного ими приращения потенциальной энергии при нагружении. Отсутствие в процессе раз-
гружения перераспределения напряжений между этими связями влечет линейную зависимость 
напряжений от деформаций. Это обосновывает наблюдаемый в экспериментах факт, известный как 
признак Ясинского — Энгессера. 

4. Отмеченная выше некорректность уравнений механического состояния бетона порождена 
не принципом наложения деформаций, а его реализацией по приращениям напряжений как для иде-
ального бетона. Наложение деформаций по приращениям уровня напряжений приводит к коррект-
ным уравнениям состояния, что означает необоснованность заявлений об ошибочности принципа 
наложения. 

5. Правомерность принципа наложения в теории ползучести бетона создает возможность приме-
нения этой теории в расчетах бетонных и железобетонных конструкций методом конечных элементов. 

Список литературы 

1. Бондаренко В.М., Бондаренко С.В. Инженерные методы нелинейной теории железобетона. Москва : Строй-
издат, 1982. 287 с.  

2. Галустов К.З. Нелинейная теория ползучести бетона и расчет железобетонных конструкций. Москва : 
Физматлит, 2006. 248 с. ISBN 5-94052-116-9 EDN: QNMEHH 

3. Boltzmann L. Zur theorie der elastischen nachwirkung // Sitzungsberichte Kaiserliche Akademie wissenhaft Wien 
Mathematische-Naturwissenhaft. 1874. Vol. 70. No. 2. P. 275–305. https://doi.org/10.1002/andp.18782411107 

4. Арутюнян Н.Х. Ползучесть стареющих материалов. Ползучесть бетона // Механика в СССР за 50 лет. 1972. 
Т. 3. С. 155–202. 

5. Арутюнян Н.Х., Колмановский В.Б. Теория ползучести неоднородных тел. Москва : Наука, 1983. 336 с.  
6. Ларионов Е.А., Бондаренко В.М. Принцип наложения деформаций при структурных повреждениях элемен-

тов конструкций // Строительная механика инженерных конструкций и сооружений. 2011. № 2. С. 16–22. EDN: 
NUCYYV 

7. Ларионов Е.А., Ларионов А.Е. К теории нелинейной ползучести // Строительная механика и расчет соору-
жений. 2015. № 2 (259). С. 58–65. EDN: TQATUF 

8. Ларионов Е.А., Рынковская М.И., Гринько Е.А. Реологические уравнения состояния бетона и релаксация 
напряжений // Строительная механика инженерных конструкций и сооружений. 2022 Т. 18 № 1. С. 22–34. http:// 
doi.org/10.22363/1815-5235-2022-18-1-22-34 EDN: WXGEUF 

9. Ларионов Е.А., Маркович А.С., Алешина О.О. Принцип наложения деформаций в теории железобетона // 
Строительная механика и расчет сооружений. 2024. № 3 (314). С. 2–12. http://doi.org/10.37538/0039-2383.2024.3.2.12  
EDN: KITWID 



Larionov E.A. et al. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):414–431 
 

 

430 ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS 

10. Бондаренко В.М. Элементы диссипативной теории силового сопротивления железобетона // Строительная 
механика инженерных конструкций и сооружений. 2014. № 2. С. 47–57. EDN: RZRQOF 

11. Бондаренко В.М., Римшин В.И. Квазилинейные уравнения силового сопротивления и диаграмма σ — ε бе-
тона // Строительная механика инженерных конструкций и сооружений. 2014. № 6. С. 40–44. EDN: SYZJHL 

12. Санжаровский Р.С., Манченко М.М. Ошибки в теории ползучести железобетона и современные нормы // 
Строительная механика инженерных конструкций и сооружений. 2016. № 3. С. 25–32. EDN: VUCZKL 

13. Санжаровский Р.С., Тер-Эммануильян Т.Н., Манченко М.М. Принцип наложения как основополагающая 
ошибка теории ползучести и стандартов по железобетону // Строительная механика инженерных конструкций 
и сооружений. 2018. Т. 14. № 2. С. 92–104. http://doi.org/10.22363/1815-5235-2018-14-2-92-104  EDN: XQIAXR 

14. Larionov E.A., Nazarenko V.G., Rynkovskaya M.I., Grinko E.A. Relaxation of stress in elements of reinforced con-
crete structures // Structural Mechanics of Engineering Constructions and Buildings. 2022. Vol. 18. No. 6. P. 534–543. 
http://doi.org/10.22363/1815-5235-2022-18-6-534-543  

15. Ларионов Е.А., Маркович А.С., Гринько Е.А. Релаксация напряжений в железобетонных элементах конструк-
ций // Строительная механика и расчет сооружений. 2024. № 1. С. 32–38. http://doi.org/10.37538/0039-2383.2024.1.32.38 
EDN: KDMPWU 

16. Александровский С.В., Соломонов С.В. Зависимость деформаций ползучести бетона от начального уровня 
напряжений // Межотраслевые вопросы строительства. 1972. № 6. С. 6–12. 

17. Назаренко В.Г., Звездов А.И., Ларионов Е.А., Квасников А.А. Некоторые аспекты теории ползучести бето-
на // Бетон и железобетон. 2021. № 603 (1). С. 40–43. EDN: RNJWLR 

18. Васильев П.И. К вопросу о выборе феноменологической теории ползучести бетона // Ползучесть строи-
тельных материалов и конструкций: Москва : Стройиздат. 1964. C. 106–114. 

19. Weibull W.A. Statistical representation of fatigue failures in solids // Transactions of the Royal Institute of Tech-
nology. Göteborg: Elanders boktr., 1949. 49 p. 

20. Болотин В.В. Некоторые вопросы теории хрупкого разрушения. Расчеты на прочность. Москва : Машино-
строение. 1962. Вып. 8. С. 36–52. 

21. Харлаб В.Д. Обобщение вейбуловской статистической теории хрупкого разрушения // Механика стержне-
вых систем и сплошных сред. 1987. № 11. С. 150–152. 

22. Санжаровский Р.С., Манченко М.М. Ползучесть бетона и его мгновенная нелинейность деформирования 
в расчетах конструкций // Строительная механика инженерных конструкций и сооружений. 2015. № 2. С. 33–40. 
EDN: TNEVQL 

23. Беглов А.Д., Санжаровский Р.С., Тер-Эммануильян Т.Н. Современная теория ползучести железобетона // 
Строительная механика инженерных конструкций и сооружений. 2024. Т. 20. № 1. С. 3–13. http://doi.org/10.22363/ 
1815-5235-2024-20-1-3-13 EDN: WVKFJM 

24. Работнов Ю.Н. Ползучесть элементов конструкций. Москва : Наука, 1966. 752 с. 
25. Маилян Д.Р. Влияние армирования и эксцентриситета сжимающего усилия на деформативность бетона и 

характер диаграммы сжатия // Вопросы прочности, деформативности и трещиностойкости железобетона. Ростов-
на-Дону, 1979. C.70–82. 

26. Бамбура А.Н. Диаграмма напряжение — деформация для бетона при центральном сжатии // Вопросы проч-
ности, деформативности и трещиностойкости железобетона : сб. науч. тр.  Ростов-на-Дону : РИСИ, 1980. С. 19–22. 

27. Назаренко В.Г., Боровских А.В. Диаграмма деформирования бетонов с учетом ниспадающей ветви // Бетон 
и железобетон. 1999. № 2. С. 18–22. URL: https://science.totalarch.com/magazine/concrete/concrete_1999_02.pdf (дата 
обращения: 12.07.2025). 

28. Ларионов Е.А. К вопросу о длительной прочности бетона // Известия высших учебных заведений. Строи-
тельство. 2005. № 8 (560). С. 28–33. EDN: PFAILF 

29. Агапов В.П., Маркович А.С. Нелинейные модели бетонных и железобетонных конструкций. Теория и реа-
лизация в ВК ПРИНС. Москва : РУДН, 2023. 263 с. ISBN 978-5-209-11784-1 

References 

1. Bondarenko V.M., Bondarenko S.V. Engineering methods of nonlinear theory of reinforced concrete. Moscow: 
Strojizdat Publ.; 1982. (In Russ.) 

2. Galustov K.Z. Nonlinear theory of concrete creep and calculation of reinforced concrete structures. Moscow: 
Fizmatlit Publ.; 2006. (In Russ.) ISBN 5-94052-116-9 EDN QNMEHH 

3. Boltzmann L. On the theory of elastic aftereffects. Proceedings of the Imperial Academy of Sciences Vienna, 
mathematical and natural sciences. 1874;70(2):275–305. (In German) 

4. Arutyunyan N.Kh. Creep of aging materials. Creep of concrete. Mechanics in the USSR for 50 years. 1972;3:155–
202. (In Russ.) 

http://doi.org/10.22363/1815-5235-2024-20-1-3-13


Ларионов Е.А. и др. Строительная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 414–431 
 

АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА КОНСТРУКЦИЙ 431

5. Arutyunyan N.Kh., Kolmanovsky V.B. Theory of creep of inhomogeneous bodies. Moscow: Nauka Publ.; 1983. (In Russ.) 
6. Larionov E.A., Bondarenko V.M. Strains superposition principle when construction elements have structural

damages. Structural Mechanics of Engineering Constructions and Buildings. 2011;(2):16–22. (In Russ.) EDN NUCYYV 
7. Larionov E.A., Larionov A.E. On the theory of nonlinear creep. Structural Mechanics and Analysis of Constructions.

2015;(2):58–65. (In Russ.) EDN TQATUF 
8. Larionov E.A., Rynkovskaya M.I., Grinko E.A. Rheological equations of concrete state and relaxation of stress.

Structural Mechanics of Engineering Constructions and Buildings. 2022;18(1):22–34. (In Russ.) http://doi.org/10.22363/ 
1815-5235-2022-18-1-22-34 

9. Larionov E.A., Markovich A.S., Aleshina O.O. The principle of superposition of deformations in the theory of
reinforced concrete. Structural Mechanics and Analysis of Constructions. 2024;3(314):2–12. (In Russ.) http://doi.org/ 
10.37538/0039-2383.2024.3.2.12 EDN KITWID 

10. Bondarenko V.M. Elements of the dissipative theory of force resistance of reinforced concrete. Structural
Mechanics of Engineering Constructions and Buildings. 2014;(2):47–57. (In Russ.) EDN RZRQOF 

11. Bondarenko V.M., Rimshin V.I. Quasilinear equations of force resistance and the σ — ε diagram of concrete.
Structural Mechanics of Engineering Constructions and Buildings. 2014;(6):40–44. (In Russ.) EDN SYZJHL 

12. Sanzarovsky R.S., Manchenko M.M. Errors in the concrete theory and creepmodern regulations. Structural
Mechanics of Engineering Constructions and Buildings. 2016;(3):25–32. (In Russ.) EDN VUCZKL 

13. Sanzharovsky R.S., Ter-Emmanuilyan T.N., Manchenko M.M. Superposition principle as the fundamental error of
the creep theory and standards of the reinforced concrete. Structural Mechanics of Engineering Constructions and 
Buildings. 2018;14(2):92–104. (In Russ.) http://doi.org/10.22363/1815-5235-2018-14-2-92-104 

14. Larionov E.A., Nazarenko V.G., Rynkovskaya M.I., Grinko E.A. Relaxation of stress in elements of reinforced
concrete structures. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(6):534–543. http://doi.org/ 
10.22363/1815-5235-2022-18-6-534-543 

15. Larionov E.A., Markovich A.S., Grinko E.A. Relaxation of stress in elements of reinforced concrete structures.
Structural Mechanics and Analysis of Constructions. 2024;(1):32–38. (In Russ.) http://doi.org/10.37538/0039-2383. 
2024.1.32.38 EDN KDMPWU 

16. Aleksandrovsky S.V., Solomonov S.V. Dependence of concrete creep deformations on the initial stress level. In the
collection of inter-industry issues in construction. 1972;(6):6–12. (In Russ.) 

17. Nazarenko V.G., Zvezdov A.I., Larionov E.A., Kvasnikov A.A. Some aspects of the concrete creep theory.
Concrete and Reinforced Concrete. 2021;603(1):40–43. (In Russ.) 

18. Vasiliev P.I. On the issue of choosing a phenomenological theory of concrete creep. In the book Creep of building
materials and structures. Moscow: Stroyizdat Publ.; 1964. р. 106–114. 

19. Weibull W.A. Statistical representation of fatigue failures in solids. Transactions of the Royal Institute of
Technology. Gothenburg: Elanders Bookstore; 1949. 

20. Bolotin V.V. Some questions of the theory of brittle fracture. Strength calculations, Moscow: Mashinostroenie Publ.;
1962. Vol. 8. p. 36–52. (In Russ.) 

21. Kharlab V.D. Generalization of Weibull statistical theory of brittle fracture. Mechanics of Rod Systems and
Continuous Media. 1987;(11):150–152. 

22. Sanzarovsky R.S., Manchenko M.M. The creep of concrete and its instantaneous nonlinearity of deformation
in the structural calculations. Structural Mechanics of Engineering Constructions and Buildings. 2015;(2):33–40. 

23. Beglov A.D., Sanjarovskiy R.S., Ter-Emmanuilyan T.N. Modern theory of creep of reinforced concrete. Structural
Mechanics of Engineering Constructions and Buildings. 2024;20(1):3–13. (In Russ.) http://doi.org/10.22363/1815-5235-
2024-20-1-3-13 

24. Rabotnov Yu.N. Creep of structural elements. Moscow: Nauka Publ.; 1966. (In Russ.)
25. Mailyan D.R. Effect of reinforcement and eccentricity of compressive force on the deformability of concrete and

the nature of the compression diagram. In the book. Issues of strength, deformability and crack resistance of reinforced 
concrete, Rostov-on-Don, 1979:70–82. (In Russ.) 

26. Bambura A.N. Stress-strain diagram for concrete under central compression. Issues of strength, deformability and
crack resistance of reinforced concrete: Collection of scientific papers. Rostov-on-Don: RISI Publ.; 1980. P. 19–22. (In Russ.) 

27. Nazarenko V.G., Borovskikh A.V. Concrete deformation diagram taking into account the falling branch. Concrete
and Reinforced Concrete. 1999;(2):18–22. (In Russ.) Available from: https://science.totalarch.com/magazine/concrete/concrete_ 
1999_02.pdf (accessed: 12.07.2025). 

28. Larionov E.A. On the issue of long-term strength of concrete. News of Higher Educational Institutions. Construction.
2005;8(560):28–33. (In Russ.) EDN PFAILF 

29. Agapov V.P., Markovich A.S. Nonlinear models of concrete and reinforced concrete structures. Theory and
implementation in PRINS software: monograph. Moscow: RUDN, 2023. (In Russ.) ISBN 978-5-209-11784-1 

http://doi.org/10.22363/1815-5235-2022-18-1-22-34
http://doi.org/10.37538/0039-2383.2024.3.2.12
http://doi.org/10.22363/1815-5235-2022-18-6-534-543
http://doi.org/10.37538/0039-2383.2024.1.32.38
https://science.totalarch.com/magazine/concrete/concrete_1999_02.pdf



