Применение колориметрии в нейросетевых методах определения возгорания в лесных массивах

Обложка

Цитировать

Полный текст

Аннотация

В настоящее время для мониторинга возгорания в лесных массивах нашли применение нейросетевые методы определения возгорания. К настоящему времени разработаны такие системы как проект «Прометей», Видеодетектор огня, метод университета искусственного интеллекта. Данные методы позволяют определить возгорание с точностью более 90 % для чего используют комбинацию реккурентных и светрочных нейронных сетей. В статье предложен метод повышения эффективности нейросетевых методов определения возгорания в лесных массивах основанный на компьютерной колориметрии. Применение данного метода позволяет повысить эффективность работы нейросетевых методов по определения возгорания при использовании нескольких камер системы видеонаблюдения. Так в статье приведено сравнение работоспособности сверточной нейронной сети с использованием и без использования колориметрического модуля. По результатам эффективность работы повысилась более чем на 20 %.

Полный текст

Введение

В настоящее время для мониторинга возгорания в лесных массивах нашли применение нейросетевые методы определения возгорания. К настоящему времени разработаны такие системы как проект «Прометей», Видеодетектор огня, метод университета искусственного интеллекта [1–4]. Данные методы позволяют определить возгорание с точностью более 90 % для чего используют комбинацию реккурентных и светрочных нейронных сетей. Согласно [2; 3] время необходимое для определения возгорания составляет от 5 до 20 с для камеры системы видеонаблюдения. Данная скорость определения возгорания является довольно большой при условии использования 1 камеры системы видеонаблюдения, так при увеличении количества камер систем видеонаблюдения пропорционально увеличивается и время необходимое для определения возгорания, так для определения возгорания с двух камер с использованием нейросетевого метода необходимо подавать на нейронную сеть два видеопотока. Подачу видеопотока можно осуществлять двумя способами:

  1. Разграничивая видеопоток во времени, т. е. каждые 5–20 сек подавать на нейронную сеть видеопоток с разных камер систем видеонаблюдения поочередно чередуя их.
  2. Уменьшая разрешения каждого видеопотока и обрабатывая данные видеопотоки как 1.

Из этого видно, что при сохранении одних и тех же вычислительных мощностей, увеличение числа камер видеонаблюдения негативно сказывается на эффективность поиска возгорания, так при двух камерах с использованием первого метода требуемое время для обнаружения минимально увеличивается с 5 до 10 с, а при втором способе снижается разрешение обрабатываемого видео, что может снизить вероятность обнаружения возгорания из-за низкого разрешения. Для избегания данной проблемы предлагается использовать дополнительный модуль для отслеживания изменения характеристик цветов получаемых с камер системы видеонаблюдения.

Исследование изменения цветности для стационарной камеры системы видеонаблюдения

Для исследования динамики изменения пропорционального количества цветов для стационарных камер системы видеонаблюдения тестировалось ряд видеозаписей лесных массивов и отслеживалась динамика наличия «огненных» цветов с промежутком раз в 1 с (рис. 1).

 

Рис. 1. Относительная динамика изменения «огненных» цветов в лесном массиве

Fig. 1. Relative dynamics of changes in «fiery» colors in the forest

 

Из приведенных графиков видно, что различия в количестве «огненных» цветов между кадрами составляет менее 10 %.

Из данного примера видно, что в течении суток изменения цветности для стационарных камер в течении даже 60 с являются минимальными, при этом в случае появления признаков первичного возгорания, а именно резкого увеличения «огненных» и/или «дымовых» цветов видеопоток с данной камеры системы видеонаблюдения можно отдать для обработки нейросетевым методом, который в течении 5–20 с обработает видеопоток только с той камеры, на которой было замечено резкое увеличение количества «огненных» и «дымовых» цветов.

Исследование влияния на производительность колориметрического модуля

Использование колориметрического модуля позволяет обрабатывать значительно большее количество видеопотоков и при этом за меньшее количество времени, т. к. на обработку отправляется только изображение с одной камеры. Алгоритм работы колориметрического модуля представлен на рис. 2.

 

Рис. 2. Алгоритм колориметрического модуля

Fig. 2. Algorithm of the colorimetric module

 

Для подтверждения эффективности работы модуля использовалась программа со сверточной нейронной сетью, архитектура которой представлена на рис. 3.

 

Рис. 3. Используемая для проверки эффективности работы модуля нейронная сеть

Fig. 3. Neural network used to test the efficiency of the module

 

Программа запускалась на 10 и 20 с по прошествии, которых подсчитывалось количество решений. Полученные данные представлены в таблице. Для моделирования использовалась библиотека Keras в языке Python, между каждым циклом проверок выполнялась искусственная задержка в 1 с.

 

Таблица. Результаты сравнения работы программы с использованием чистой сверточной нейронной сети и с использованием колориметрического модуля и сверточной нейронной сети

Table. The results of comparing the program operation using a pure convolutional neural network and using a colorimetric module and a convolutional neural network

Тип опыта

По прошествии 10 с

По прошествии 20 с

Без колориметрического модуля

8

15

С колориметрическим модулем (увеличение «огненных цветов 5 %)

10

18

 

Из приведенных результатов видно, что количество выполняемых проверок за 10 с увеличилось на 25 %, а при 20 с на 20 %, т. к. нейронная сеть вызывалась нечасто. Более сильный разрыв в результатах будет наблюдаться при использовании более мощных нейросетевых методов поиска возгорания, которые используют и рекуррентные нейронные сети (сети с памятью).

Заключение

В заключении можно сделать следующие выводы:

  1. Для стационарных камер систем мониторинга за состоянием леса изменение цветности между кадрами составляет менее 10 %.
  2. Использование колориметрического модуля позволяет значительно повысить эффективность работы нейросетевых методов при работе с несколькими камерами
  3. Предлагаемый метод можно отнести к компьютерной колориметрии
×

Об авторах

Александр Александрович Кузьменко

Поволжский государственный университет телекоммуникаций и информатики

Автор, ответственный за переписку.
Email: alexandr291294@mail.ru

техник кафедры радиоэлектронных систем

Россия, 443010, г. Самара, ул. Л. Толстого, 23

Список литературы

  1. Факундо С. Проект «Прометей»: поиск пожаров с помощью ИИ. URL: https://habr.com/ru/company/nix/blog/441620/
  2. Проворов Е. Определение возгораний на ранней стадии по видеосъемке с помощью нейросетей. URL: https://neural-university.ru/projects/evgeniy_provorov
  3. Видеодетектор огня. URL: https://habr.com/ru/company/etmc_exponenta/blog/590671/
  4. Дамдынчап Ч.А., Шарапов А.А. Применение нейронных сетей для распознавания дыма и пожара на изображениях // Интерэкспо Гео-Сибирь. 2021. Т. 7, № 2. С. 38–43.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Относительная динамика изменения «огненных» цветов в лесном массиве

Скачать (87KB)
3. Рис. 2. Алгоритм колориметрического модуля

Скачать (191KB)
4. Рис. 3. Используемая для проверки эффективности работы модуля нейронная сеть

Скачать (228KB)

© Кузьменко А.А., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».