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Abstract - Background. The work is aimed at developing and researching rigorous methods for solving internal problem
of electrodynamics for multi-element structures (metastructures) consisting from the final number of elements, as well as to
study the physical processes occurring in them. A special case of such structures are two-dimensional lattices with a fixed
interelement distance, consisting of identical elements having the same spatial orientation (regular lattices). Aim. In this work,
based on an iterative approach, the internal solution is solved. problems of electrodynamics for a finite regular two-dimensional
lattice of spiral elements. In order to obtain a priori information about the electrodynamic characteristics of elements lattice
and justification for the choice of projection function systems are analyzed spectral characteristics of the integral operator
of the internal problem for a single spiral element. Then the currents on the structure elements are calculated, their spectral
characteristics are determined. The results of spectral analysis allow increase the efficiency of solving an internal problem.
Methods. The research is based on a strict electrodynamic approach, within the framework of which, for the specified structure
in the thin-wire approximation, an integral representation of the electromagnetic field is formed, which, when considered on the
surface of conductors together with boundary conditions, is reduced to a system of Fredholm integral equations of the second
kind, written relative to unknown current distributions on conductors (internal task). The solution of the internal problem within
the framework of the method of moments is reduced to solving a SLAE with a block matrix. Results. A mathematical model of
a finite two-dimensional lattice of spiral elements is proposed radiating structure. For the specified structure, in the case of its
excitation by a flat electromagnetic wave, based on the iterative approach, the internal problem of electrodynamics was solved.
The following were carried out in a wide frequency range: analysis of the convergence of the iterative process, spectral analysis
of the integral operator of the internal problem for a single spiral element, as well as spectral analysis of external field and
current functions functions on lattice elements. Conclusion. The feasibility of determining the spectral characteristics of integral
operators is shown internal task for the elements forming the metastructure. A relationship has been identified between the
frequency dependence eigenvalues of the integral operator of the internal problem of single elements, forming a metastructure,
with resonance phenomena arising in the metastructure, the influence of resonances on the convergence of the iterative process
was confirmed. The feasibility of considering averaged amplitude current spectra is shown. It was revealed that the averaged
spectrum of current functions is close to degenerate, especially near resonant frequencies. This allows for use as projection
functions a compact set of eigenfunctions that have significant amplitudes in the vicinity of the frequency under study, which
significantly simplifies the solution of the internal problem.

Keywords - metastructure; spiral structure; Fredholm integral equation; thine-wire approximation; integral representation of the
electromagnetic field; resonance; current distribution; Gauss-Seidel method; eigenfunction method.

Introduction

o ) . problems are general by nature.
One of the principal trends in electrodynamics is

ties of the EMF generated by the current. The above

the study of processes in emitting and re-emitting
antenna arrays and the determination of the prop-
erties of generated and dissipated electromagnetic
fields (EMFs). The former is known as the emitting
problem, whereas the latter is the EMF diffraction
problem. The study of the processes in such arrays re-
quires identifying current distribution functions over
array components. This is the internal electrodynam-
ic problem. Meanwhile, the external electrodynamic

problem involves the determination of the proper-
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Note that an array is any structure containing
multiple components. Each component has its cur-
rent distribution function. The vast majority of real-
world antennas (e.g., phased antenna arrays) fall un-
der this definition. Re-emitting arrays include chiral
structures [1], photonic crystals [2], diffraction grat-
ings, some types of microwave lenses and slow-wave
circuits, and any microstructures. The above-listed
examples, except for microstructures, are called
metastructures or metamaterials. Metamaterials are

manufactured by introducing particles of various
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shapes into a base material to modify its dielectric
and magnetic susceptibility. They consist of repeat-
ing patterns that govern their properties. The paper
by V.G. Veselago [3] can be considered the founda-
tion of metamaterials science. Metamaterials can
have unconventional properties not found in natural
materials, such as their negative refractive index [4]
(left-handed materials). D.R. Smith and his team at
the University of California, San Diego [5] reinvented
and demonstrated such materials more than 30 years
after V.G. Veselago published his article. Their work
was based on the study by J.B. Pendry [6-8].

Nowadays, metamaterials are used in high-perfor-
mance microwave devices and antenna feeders. The
review of Vendik et al. [9] presented the applications
of metamaterials to microwave devices and anten-
nas. Other examples of metamaterials are photonic
crystals [2]. They can be used to make optical filters,
waveguides, and many other devices.

Interactions between elements in emitting and re-
emitting arrays are of special interest. These interac-
tions must be incorporated into valid mathematical
models of antenna arrays. A valid mathematical model
correctly represents the processes in an array. Mean-
while, an effective mathematical model significantly
reduces the time and resources required to analyze or
design an array with specified characteristics.

Throughout the development of electrodynamics,
optics, and microwave device technology, numerous
methods, each with distinct advantages and disad-
vantages, have been developed. Among these, the in-
duced EMF method has been used for a long time to
analyze interactions in multielement emitting arrays.
Schelkunoff et al. [10] presented the basic principles
of this method. Using the induced EMF method, one
can find the affected impedances of antenna elements
and the amplitudes and phases of currents in passive
antenna elements. However, a disadvantage of this
method involves some restrictions on the length and
distance between array elements as approximate cur-
rent distributions are used.

Nowadays, computer-aided design (CAD) systems
are used to solve such problems using the method of
moments [11], the finite element method, and the fi-
nite difference method [12]. However, the drawbacks
of this approach include the high requirements for

computer hardware performance, expensive soft-

ware, and the unavailability of an explicit mathemati-
cal model of the analyzed antenna array.

CAD systems can also be used for the analysis of
metamaterials with the pros and cons already men-
tioned. Rigorous methods with periodic boundary
conditions are the most efficient options for the anal-
ysis of metamaterials with a regular structure pat-
tern used in long- or unlimited-wavelength antenna
arrays. Meanwhile, simplified approaches use circuit
theory methods (equivalent circuits) and effective di-
electric and magnetic permeability. Optical and qua-
sioptical methods are also suitable for the analysis
of metamaterial antenna arrays working with long
wavelengths. In this respect, the validity of any sim-
plified model should always be confirmed [13].

Therefore, general-purpose methods must be devel-
oped for the analysis of interelement interactions in
antenna arrays. In this regard, Ilinskiy et al. [14] pro-
posed an iterative approach to solving integral equa-
tions used in the wire antenna theory. The approach
was based on the multistep minimal residual method.
This method was applied directly to the general ma-
trix of a system of linear algebraic equations (SLAE).
Meanwhile, Neganov et al. [15] used a modification of
the Gauss-Seidel method [16] for a block matrix of an
SLAE for interaction analysis. The method was ap-
plied to solve a diffraction problem for a metastruc-
ture, a thin layer with finite dimensions consisting of
double open rings. The proposed method was found
to be effective for the analysis of metastructures with
finite dimensions. Further, Neganov et al. [17] con-
sidered the problem of a plane electromagnetic wave
(PEMW) diffraction on a chiral layer. The layer was
a rectangular, evenly spaced 10 x 10 array composed
of five-segment S-elements. They showed that de-
spite the rather small number of chaotically oriented
S-elements, the scattering diagrams were quite ori-
ented. In another study [18], the findings presented
by Neganov et al. [15] were supplemented with algo-
rithms for the calculation of the SLAE block matrix
elements for a structure consisting of identical ele-
ments with different types of symmetry. These algo-
rithms significantly reduced the computation time.
Tabakov et al. [19] considered the applicability of the
method presented by Neganov et al. [15] to the analy-
sis of current distributions in a director antenna [20].
The method had good convergence for the analysis
of a director antenna in a specified frequency range.
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Further, Tabakov et al. [21] studied the applicability of
the iterative approach to solving the internal problem
for a symmetrical vibrator with a reflector made of
parallel rectilinear conductors. They also presented
a key algorithm for calculating the block matrix ele-
ments. The algorithm’s running time increased lin-
early with the number of reflector elements. The au-
thors also provided recommendations on the selection
of projection function systems (PFSs) depending on
the symmetries present in the structure. They also
studied the distributions of the currents, input resist-
ance, and radiation characteristics of the structure.

This study aimed to solve the internal problem for
a finite regular two-dimensional (2D) array consist-
ing of conical spiral elements. The array was excited
by a plane linearly polarized electromagnetic wave.
We used the method proposed by Neganov et al.
[15] as a basis for the solution of the internal prob-
lem. We also proposed an algorithm for calculating
the compact block matrix based on the algorithms
described previously [18]. We performed a spectral
analysis of the internal problem’s integral operator
for a single spiral element as previously described
[22] because the resonance properties of the array ele-
ments affect the convergence of the iterative process.
Another reason was to verify the selection of the sys-
tem of projection functions used in the method of
moments. In this paper, we present the following:

- the spectral analysis results for a single spiral
element and an array of such elements,

- the convergence of the internal problem solu-
tion for an array of elements,

- interpretation of the results, and

- proposals for subsequent research.

1. Basic mathematical expressions

The basic expressions have been sufficiently pre-
sented previously [21], but we provide them with
some explanation. Let us consider an emitting or re-
(neN:

1...N, N is the number of elements). The array is

emitting array consisting of the elements v
formed from its unique elements v, by their paral-
lel translation and/or rotation (ueU: 1...U, U is the
number of unique elements). The internal electrody-
namics problem for this array is reduced to the fol-

lowing operator system [19]:

D, My =Gy ' EN. (1)

In this system, ¥ n#n' are operators repre-

n,n'’
senting the interaction between the elements v, and
Vs W, =¥, is the eigenoperator of the element

v,; €, represents the functions for the currents in-
duced by external fields; and n,, indicates the current
distribution functions to be defined. The method of
moments [11] is applied to system (1). Using the sys-
tems of basis {B}, = {qu}nr and test {t}, = {rq}n
1..Q, ¢'=q,€Q: 1..Q",

we find the scalar product operator of the functions.

functions (q=g, €Q:

The sought functions m,, are approximated by the

following series:
T‘ln, = ZI((]? )Bn',q" (2)
7

The following SLAE is constructed with respect to
the unknown coefficients If;,"):
Z1=E, (3)
where Z is the block matrix of generalized imped-
ances and I and E are the block vectors of the un-

knowns and the right-hand side, respectively:

(n,n') _
a2 Zq’q =< rn’q,‘Pn’n,(Bn,’q,) >,
(n')

Io i > Iq,

231
(n)
, Ede, DE nq,(;

The block matrix elements with identical indices
Z,, =y form intrinsic impedance matrices, whereas
the elements with different indices form mutual im-
pedance matrices. The latter defines the interactions
between the metastructure elements. The «<>» brack-
ets denote a scalar product. Let us introduce an ar-
U...K).

We assume that the first U matrices of the array {z}

ray of unique matrices {z;} = {z} (ke 1...

form intrinsic impedance matrices containing unique

elements v,, whereas the remaining K-U elernents

Yus
form mutual 1mpedance matrices. The array {p 4
with its elements p( ,» =k matches the pair of1nd1ces
n,n'e N and the 1ndex k € K. Therefore,

7,y =7, k=p", cip® 1=}

In the general case, the antenna array consists
of chaotically arranged, heterogeneous elements
v,. The introduction of the arrays {z} and {p(i)}
makes no sense as they only insignificantly increase
the requirements for computer memory and time.
However, when the antenna array contains identi-
cal and regularly arranged elements, the inequality
K <N? takes place and the introduction of these ar-
rays makes sense. They contain the fundamental part

of the a priori information about the antenna array.
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The algorithm for calculating the array of unique ma-
trices is discussed below.

The final stage of the solution for the internal prob-
lem is the solution of the block SLAE (3). In this case,
matrix-splitting iterative methods [16] seem promis-
ing, but if the matrix Z is not diagonally dominant,
such methods do not ensure convergence.

To ensure the convergence of classical iterative
methods, we can consider the block SLAE (3) assum-
ing that there is no strong relation between the ele-
ments. Another factor that greatly affects such con-
vergence is the selection of PFSs. The optimal option
is the systems of eigenfunctions (EFs) of the elements
or a PFS closely similar to the EFs [23]. The EF com-
putation is an auxiliary problem. Its complexity is de-
termined by the number of unique elements v, and
their properties. The complete eigenvalue (EV) prob-
lem for the intrinsic impedance matrices of unique
elements Zz,, obtained using the method of mo-

and test functions t

ments, basis functions B, 7 ng
b )

is expressed as follows:
z j(u) - D(x(”))f(”),

where ¥ is a matrix whose columns contain eigen-

vectors (EVEC) of the matrix Zz,; D(x(u)) is the diago-

(u)

nal matrix formed by the vector x'*’, whose elements

g, are the corresponding EVs of the matrix z,; and
D is the operator that produces the diagonal matrix.
The operand D is a vector of the main diagonal ele-
ments or a matrix whose main diagonal elements are
used by the operator D to create the diagonal matrix.
From here onward, we assume that complex matrices
z, are symmetrical for single elements. The EV &
approximates the EVs of the integral operators ¥,
whereas the EFs of the above integral operators are

approximated by the EVECs as follows:

'

Q
R (u) (u)
Bu,q = Z’ql'l,qBU,Q" ]nb,lq €

q=1

T(u)_

In the following, this problem is considered for
a conical spiral element of the antenna array.

Applying the Gauss-Seidel procedure [16] to
the block SLAE, we obtain the following solution:

an nrl ) ZWn 5y l,” (4)

I>i

V=p,e

I hereinafter is the current iteration step:

R — _

P, = Zn n’ wn,n' =Pn n,n'’

where P, represents inverse eigenmatrices and
weight matrices, respectively, and it acts as the pre-
conditioner matrices. Procedure (4) can also use

a simpler option:
— = -1
P, = D(zn’n) .

If we assume that the second sum (4) [+1=1, then
the equation represents the simple iteration method.
The convergence criterion is the following inequality:

(| (I+1) |/|ll+1 | <8 (5)

9, —max
where 8. is an arbitrarily small predetermined num-
ber. Hereinafter, |v| is the Euclidean norm of the

vector v.

2. Integral representations of the EMF
in a thin-wire multielement array

The multielement thin-wire array L is a set of N
thin conductors L, L,, ..., Ly of arbitrary shape
arranged in a free space with the wave impedance
W, . For simplicity, let us assume that all the con-
ductors have the same radius &. Each conductor can
be described by a vector equation as a function of the

natural parameter [:
r,()=xX )+yY, ()+zZ, (),

n

lelL, . L ]

n,min’ “n,max

where X, (I), Y,(), and Z (I) are smooth func-

tions. The length of the nth conductor is L, =
L -L

n,max The integral representation of the

n,min*
EMF (IR EMF) of such an array can be expressed as
follows [24]:

N
=>| 1 ox®
L
n'=1 n'

where I ,(I') is the total current distribution along

r,r ()dl', F=E,H; )

the generatrix L, .

(E) _ ""'m | .21 0 !

K“Y =—2| k*I'Gdl——((r—r")B
ik { Pl )}’
H) _ i'x(r—r')B

are the IR EMF cores, r'=r,(l') is the vector equation
oy and I'=1 ()= dr () /dl is the

unit vector of the tangent defined at point I' on the

of the generatrix L,

generatrix [ ..

~ exp(—ikR)
© 4nR

106 _kR+1
R OR R2

R=+/|r—r']? +&
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are Green’s functions for free space and its derivative,
respectively, and R is the distance regularized by the
conductor radius e.

L.l

(') can be reasonably represented by series (2).
Then, the initial IR EMF (6) is

F(r)= D > 1% L By (K (x5, (1))dl', F=E,H;
n q n'

The boundary condition for an ideal conductor is

valid for each generatrix:
E (e 1)+ Ex, 1)1, (0)=0. 7)

Multiplying (7) alternately with the test functions

T, q(l) and integrating over [, we obtain an SLAE for
computing I((;,"), which is similar to (3), where
(n,n') _ N (nn') (g 1 370
Zi) = [ [ 1 g OBy g O™ 1 ®)
LL

B j T o OV (D)l
L

w0 =1 0)-KEx 0),r,, 1)),

n ’n

-E (e @),

Mgy -1

v =1, a

Let us describe the calculation of the integrals in (8)

using the conductor segmentation procedure. In this

procedure, the nth conductor is represented as a set
(M).

of M+1 nodes L,": PR APTIRTINS ATVIPR The mth

segment r, _(I), is located between the nodes with

n,m
numbers m and m+1, represented as

Gy D=t + 1l Tel-A, [2,A, /2],

n,m

where fom = (rn’m +rn’m+1)/2 is the center of the seg-
ment, A =1, .4 -1, | is the segment length,
and ln,m = (rn,mH —rn,m)/An,m is the unit vector of

the tangent to the segment. Hereinafter, the indices
meM: 1..M and m'e M" 1...M' are associated
with the segments of the nth and n'th elements of the
array, respectively.

We use the weighted sums of functions that are
piecewise constants within each segment as basic

functions:
BMD =" B, o0, )l A ), o)
m

where l.n)m is the value of the natural parameter on
the segmented generatrix L(,fw) at the center of the
segment with index m and o(l,l,A) is the function
describing a rectangular unit pulse with its center at
point [ and width A. We use weighted sums of the

Dirac delta functions as test functions:

T%)(l) = ZIn,q(l'n’m)S(l _in,m ). (10)

m
This approach can be considered as a generalized
collocation method [25]. The expressions above show
that in case (9), the values of the functions 8, q(l), cal-

culated at the collocation points [ act as weight-

nm
ing coefficients, whereas these are the functions
rn,q(l) in case (10).

From expression (8) and considering delta function
properties, we obtain equations for the SLAE matrix
coefficients and right-hand side coefficients using

the following finite sums:
(n,n') i i (n,n")
Zig = zzrn,q(ln,m)Bn',q’(ln’,m’ Mo’
m m

~ R

(11)

u(nfi,,r;;’) - J.A l‘l(n,n’)(lln,m’l,)(il” VS‘Z) = V(n)an m)'
The conventional collocation method corresponds to

BugD=5,;  7,,0=3
an’q ’

b

l,in’q
where Sy 18 the Kronecker delta. A correct solution
of the SLAE using the collocation method is achieved
when the following condition [26] for any segment is
satisfied:

26 <A <12 (12)

3. Antenna array

Fig. 1, a shows the arrangement of the studied
antenna array, and Fig. 1, b shows the geometry of
a spiral element. The antenna is a rectangular grid in
the plane xOy. with a size of L, xL, . The nodes of
the grid contain re-emitting elements with identical
shapes and spatial orientation. As the grid spacing is
constant, the entire array is regular. The size of the
re-emitting elements does not exceed D. A PEMW
with linear polarization excites the reradiation.
The PEMW angle of incidence in the antenna array is
arbitrary. The external electric field g generated
by the wave excites currents distributed along the re-
emitting elements. These currents induce the EMF
generated by the antenna array.

Let us consider the antenna array in detail. For con-
venience, double indices are used for the array nodes

and elements. We denote the indices along the array
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Fig. 1. Antenna array (a) and geometry of its elements (b)
Puc. 1. TeomeTrpus peweTk (a) 1 06pasyloLInX ee 21eMeHTOB (6)

X%k min

L "

max

axes i, iy. When filling in the final SLAE matrix,

the double to consecutive indices (n=1...N):

, DN, i =1,0N,, i =1, N

Let us consider the geometry of the array. Here-

n=i +(i (13)
inafter, h, and hy are the distances between neigh-
boring elements. With these notations, we can find

the coordinates of the array nodes:
r, ; =x(h (i,-1)-L [2)+y(h ( -1)-

i,

X7y
N, and N, are the numbers of the array elements

L, /2).

along the axes. In this case,
L =(N -1h, L =(Ny—l)hy.

x x>y
The elements L; ; of the array are conical spirals

X?
made of a perfect conductor with a circular cross-

X

section. The axis of each spiral is parallel to the axis
Oz. Fig. 1, b shows the spiral element. The minimum
Iin» Whereas the maximum

. The height of the spiral is H, and

the number of turns is N;. The axis of a spiral ele-

radius of the spiral is

radius is 1.

ment is the line coinciding with the axis Oz. The di-
ameter of conductors 2g is essentially less than A
and essentially less than the size of the spirals and the
turn-to-turn distance. Such geometry allows us to use
thin-wire approximation in the antenna array model
(see the expressions given in the previous section).

The general equation of the conical Archimedean

spiral is

L:x(t)=(r,, —ht)cos(st) X+ (14)
+ (1 g —het)sin(st) y +h tZ,

t €[0,2nN,],

where ¢ is a non-natural parameter, r; and r_..

are the minimum and maximum radii of the spiral, re-

spectively, H is the spiral height, N; is the number of
turns, h, is the radial factor, and h, is the axial pitch
factor. The parameter s=+1 specifies the winding di-
rection; thus, the parametric equation can be used to

analyze both the left and right spirals. The variables

h, and h, can be estimated for the given r_, , r_ .
H, and Nj as follows:
ro.—T H
hr - max min , h - X (15)
ZTENI ZTENI

To determine the natural parameter of the conic

spiral, the following expression is used:

t
I(c) = j 11(e") | de’,
0

where i(t) =d

(16)

r(t)/dt is the tangent unit vector de-
fined at the point r(¢) of the generatrix. The equation
of the conical Archimedean spiral with a natural pa-
rameter can be obtained from (14) with the substitu-
tion t — t(I). For the function ¢(l), there is no explicit
expression on the conical Archimedean spiral, so it
can only be found numerically using expression (16)
and the inverse interpolation method [16]. Any ele-

ment L; ; of the array can be obtained as

(17)

where E<z (¢) is the rotation around the axis Oz by
the angle ¢. Now, we can switch to consecutive num-
bering (13) and use the expressions given in the previ-
ous section.

The PEMW field W (Fig. 2) is as follows:

E™(r) = p Ey exp(—ikr + ),
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T

Fig. 2. PEMW W against the primary wave W' and the global
Cartesian coordinate system

Puc. 2. CBsI3b IJIOCKOH 371€KTPOMarHUTHOM BoHBI W C mepBUY-
HoM BonHOW W' M rno6anbHON JeKapTOBOM CUCTEMON KOOPAUHAT

HY(r) = [lA(fo]‘f/—Oexp(—ikr +yo),
m

where k:lA(k, k is the wave unit vector, k is the
wave number, E is the amplitude of the electric field
vector, W, is the wave (characteristic) impedance of
the medium, v, is the initial phase of the wave, and
p is the polarization vector that specifies the oscilla-
tion direction of the wave vector E.

PEMW is defined by five parameters: amplitude
E,, phase vy, polarization angle ®@,, and two an-
gles 6, and ¢, that specify the direction of wave
propagation. Let us define the base wave W' (Fig. 2).
Its unit vectors R', p' coincide with the axes of the
global rectangular coordinate system. To avoid ambi-
guity, we assume that p'=1z, k'=%. In this way, the
wave W' has a vertical polarization and propagates
along the axis Ox. The relationship between the unit
vectors of the waves W and W' is

—(z) —(y) —(x) , N
v=R (py)R"(05)R " (w,y)v, v=p,k.

. . ) )
In this expression, R f (¢) represents the matrices

of rotation around the axes and ¢ is the rotation an-

gle; f=xy,z

4. Obtaining the array
of unique matrices

A previous study [18] presented direct and key-
based algorithms for calculating {p(z)} and {2}. These
algorithms could be either exact or approximate. The
advantage of the direct algorithm was its versatility,
whereas the main disadvantage was the higher com-
putational complexity due to the comparison of the
blocks of the matrix Z. However, this previous study
[18] did not indicate that such an approach could be
effective for analyses with multiple frequencies and/
or large numbers of antenna array excitation options

because the algorithm is not iterative. To estimate

the array of unique matrices for the considered an-
tenna array, we propose an approximate combined

algorithm. The informative parameters 1, 1, are

n
truncated systems of the basis {E}n, = {qu}n! and

test {t}, = {‘Eq}n functions (G= {, c0: 1...Q, q=
dy €d: 1..Q; Q< Q, Q'<«Q). In this case, the
keys = (1,,1,/) are matrices of intrinsic and mu-
tual impedances of small dimensionality Z,, =
< Tn,é’\Pn,n'(Bn',q’) >. For the considered antenna ar-
ray, the truncated PFSs can be derived from the fol-

lowing systems of functions:

Bugh=2cosl2q- 1wl @L), 7, (=B, 0. (19)

These systems are quite similar to the EF system
for a thin rectilinear conductor of length L at small
values of L/A [23]. For the given antenna array, the
generalized collocation method can be used to obtain

Zy,y using expressions (9)-(11).

The algorithm steps are as follows:

e The key x=x(1,,1,); is calculated for the cur-
rent n, n' from the informative parameters 1,, | of
the current elements.

o The key k' is sought in {x}, to satisfy the condi-
tion p=|k—«'|/|k'|<p«, where p.« is the acceptable
key mismatch.

o If the key «' in the kth position of the vector {x},

5
o If no key «’e{k} satisfies the condition p < ps,

satisfies the condition p <p«, then p ir)l, =

then the key x, is added to the vector {x} and the
matrix z, . is added to the vector {z}, where K’ is
the number of elements of the expanded vector {xi}.
The algorithm is performed first for matching and
then for mismatching n and n'. In the first step, the
number of intrinsic impedance matrices is deter-
mined. In the second step, the number of mutual im-
pedance matrices in the array is determined if unique

matrices are determined.

5. Analysis of the spectral
characteristics of the impedance
matrix for a single spiral element

As shown above, the spiral geometry (Fig. 1, b) can
be defined by six parameters: the lower and upper ra-

. and r.

dii r, the spiral height H, the winding
direction s, the number of turns N, and the spiral
conductor radius €. For the given parameters, we can
estimate the coefficients h. and h, (15)included in the

spiral equation (14). To study the spectral character-



Tabakov D.P., Bassam Mohammed-Ali Al-Nozaili Solving an internal problem for finite regular two-dimensional lattice ...
24 Ta6axos [I.I1., Anb-Hoszalinu B.M.A. PelieHre BHyTpeHHEH 3ajauu [JIs KOHEYHOH PerysipHOM AByMEPHOH PEelIeTKH ...

istics of the impedance matrix for a single spiral ele-
ment, the use of normalized parameters is reasonable.
The main parameter normalized to the wavelength A
should be the doubled maximum radius of the spi-
ral 2r

H<2r_ . ). Let us denote the relation 2r .

For numerical simulations, we studied the spiral with
2r )= 0,3682,

max

(the maximum extent of a single element at

[\ as ¢

the following parameters: 2r_ . /(

H/@r_ . )=0025 ¢/@r_ )=00037, N;=2, and
s=1. In this case, L/(2r , )~ 4323 or L/k=y~=

4,323c. The latter expression is useful because an-
tenna arrays similar to the considered one may fea-
ture three types of resonances: thin-wire, surface, and
volume. Thin-wire resonances are predominantly de-
fined by the length and shape of the conductor. They
are high-q resonances and are most pronounced at
half-integer values of 3 not exceeding several units.
Meanwhile, surface resonances are defined by the
shape of the spiral element’s support structure. Vol-
ume resonances are defined by the volume containing
the spiral conductor. As a rule, the resonances of the
latter two types have significantly lower q. They occur
at multiples of the antenna array wavelength and do
not exceed several units.

For numerical simulation, the parameter ¢ varied
from 0,0125 to 0,53 at y € [0,054;2,28]. The imped-
ance matrices were formed using the conventional
collocation method, and the number of segments
M was assumed to be 179, which at the given ratio
e/(2r,,.) satisfied condition (12). Hereinafter, the
wave impedance of the medium W, is assumed to be
120 ohms, which is true for vacuum or air. We also
assume that the medium is nondissipative. Therefore,
the expression k=27n/A can be used to calculate the
wave number.

Fig.3shows the curves & =Re¢ , & =sgn(Im(,))
Ig(1+[Im(E,)|) (a), and —lg|&, | vs. x (b). The index
n indicates the curve number. The curves show that
the EF versus frequency curves are resonant. There
are four resonances in the considered range. These
resonances can be categorized as thin-wire ones be-
cause they closely match the n/2 values. The curves
show that the resonance for the first EF occurs at
x, slightly less than 1/2, whereas the resonances for
the subsequent EFs occur at y, greater than n/2.
The larger the value of n, the larger the upward devi-
ation. This can be understood if we represent each EF

as a superposition of a pair of traveling waves propa-

gating along the conductor in opposite directions.
It becomes obvious that the phase velocity of these
waves for n=1 is less than the speed of light and
greater than the speed of light for n>1. The growth
of the phase velocity, in turn, is associated with
a more intense turn-to-turn interaction promoted by
the growth of y and the features of the higher-order
EFs. Moreover, the g-value of the resonances drops
rather quickly as n grows.

Fig. 4 shows the first four normalized EFs Bn(l/L)/
En max» calculated at the resonance values y. Appar-
enély, the shape of the EFs is close to that in (19), but
the total EF amplitude at n>1 has a significant im-
aginary component. We can also note here the asym-
metry of the EF curves, which increases with n. This
asymmetry is caused by the shape of the spiral ele-
ment. The amplitude distributions show that the EFs
are predominantly a standing wave. The nonzero cur-
rents in the nodes at n>1 indicate the insignificant
share of the traveling wave component. The direction
of propagation of this component along the conduc-
tor can be identified by the direction of the EF ampli-
tude decrease.

The study of the spectral characteristics of the im-
pedance matrix of a single spiral element allows us to
confirm that PFS (19) can be used to estimate reso-
nances in antenna array elements. Notably, however,
this estimation is approximate as the resonance prop-
erties of an element in a sufficiently dense array may
differ from the characteristics of a single element.
In this case, we can expect changes in the g-values of

the resonances and resonance frequency shifts.

6. Performance of the block
matrix compression algorithm:
iterative process convergence

The geometry of the single element given in the
previous section was used for the numerical simula-
tion of the antenna array. We assumed that all the ele-

; related to the single element L accord-

ments Li .
X,
ing to expression (17) had the same constant angle

¢; ; =¢. For the simulation, the angle was assumed
X,

to be 0. The antenna was excited by the PEMW W, and
its EMF was expressed by expression (18). The am-
plitude of the electric field vector E; was assumed
to be 1 V/m, the initial phase y, was 0°, the angle

@, was 0°, and the polarization angle was @, =90



2024, vol. 27, no. 3, pp. 17-33

Physics of Wave Processes and Radio Systems

2024. T. 27,N° 3. C. 17-33 DursuKa BOJHOBBIX IPOLIECCOB U PafUOTEXHHUYECKHE CUCTEMBI 25
roen
n&n T T T 5
4
2500
3
2
2000
1
1500 0

1000

500

[ I S I S

1.5 2 X
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ber is the EV number
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(H polarization). The incidence angles 6, were 0°,
45° and 90°. We refer to these angles as the end, side,
and normal PEMW incidences, respectively.

The array geometry is defined by four parameters:
the distances between neighboring nodes h, and hy
and the number of elements N, N, along the coor-
dinate axes. We denote the relation h /A as 3. We
a’ Nx =
N,=N,. We considered antenna arrays with N, =

assumed for the simulation that h, = hy =h

2,4...24. The total number of elements N in such
arrays was defined as NZ. For the considered array
the parameters, ¢ and 9 were related as ¢/93=10,53,
which was the fractional factor of the elements within
the array. At ¢/93=1, neighboring elements touched
each other. We studied the range 9 € [0,0625;1].

In this case, the convergence of the iterative process

depended only on N, and 8. Meanwhile, the com-
pression ratio K/N depended only on N,. Fig. 5
shows the compression ratio K/ N against the num-
ber of the array N curve. Apparently, this relation
is linear and can be approximated by the function
K/N=~ (4/15)N =(4/15)N>. Note that the direct cal-
culation of the matrix elements produces a quadratic
relation. The proposed algorithm for the calculation
of the block matrix elements significantly reduces the
required computer memory and computing time.
Fig. 6 shows the convergence table of the iterative
process. The maximum number of iterations is 100.
Reaching this value means no convergence. Con-
sidering the mentioned relation between ¢ and 1y,
thin-wire resonances in single elements of the array

occurred at 9~0,217n, where n is the resonance
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number. For the first four EFs, the resonances should
occur in the neighborhood of 8=0,217, 0,434, 0,651,
and 0,868. The resonance frequencies could shift be-
cause of the interaction between the antenna array el-
ements. The figure shows that the deterioration and
lack of convergence occurred in the neighborhood
of the resonance frequencies of the first three EFs.
The first resonance did not lead to the loss of con-
vergence, whereas the fourth EF resonance did not
manifest itself. For a more complete explanation of
this effect, we must analyze the angular distributions
of each EF field and determine the spatial orienta-
tions of the field maxima.

7. Analysis and interpretation
of the proposed internal
electrodynamic problem

Let us consider the external field functions and
current distribution functions approximated by the
expansions in the EFs of the single element’s integral

_ (n)
B ZEqn Bn
q
EM ce

n’ q n*

operator (2):
=> 1B,
q

leL, I‘(I”)ei

For the considered array, the vectors of the ampli-
tude coefficients averaged over n can be reasonably

used:
(@ pla pa_1 M| foj _
f9SEYF —NZ|Fq f=ie F=IE,

n
The corresponding mismatch values p(nf’a) =
1£9_£@ /1@, f=ie The simulation indicat-

ed that in the studied frequency range for the arrays
with N, =2...24 at 6,=0..90° angles of incidence,

the average values of these mismatches did not ex-
ceed 0,09 and the median values were less than 0,025.
Meanwhile, it confirmed the applicability of the aver-
aged vectors of the amplitude coefficients and indi-
cated a high homogeneity of the current distribution
functions. Hereinafter, the vectors of the amplitude
coefficients normalized to the maximum value are de-
fla/max) _ /fmax nfax is the maximum
,and £ =[]
is its Euclidean norm. The supremum of the vector

£@ is the value f1*uP) = max(fégx,fr(l‘rlzn ).
Fig. 7 (top) shows the normalized spectrogram
é(a/max)(S) for N, =8, 6,=90°. The abscissa axis in-

dicates the 9 values, whereas the ordinate axis indi-
. (a/max)

noted as

amplitude element of the vector f

cates the number of vector elements & . Appar-
ently, the spectrogram shape did not depend on 9,
and the maximum amplitude corresponded to the
fourth EF. This was because the spiral elements had
two turns. In general, we can note that the spectrum
was quite broad in the range 3. Fig. 7 (bottom) shows

ila/max) ) for a similar

a) 8)/J'f(5up)

j= max,nrm) curves. These relations and

the normalized spectrogram i
case, and Fig. 8 shows the f]alsup) f
(f =i,
the spectrogram indicate that the spectrum of the
EFs of the antenna array in the investigated range 0
is narrowband and resonant.

The difference in the amplitudes of the curves

(al (af . .
f a/sup) o4 fn‘;nslup (f =i,e) can be use.d to estimate
the spectrum degeneracy. If fnfa{f;uP fr(l‘rlr/gup), then

the spectrum is degenerate and consists of only one
spectral component. The external field spectrum was
nondegenerate over the entire range, whereas the
spectrum of the current functions was close to degen-
erate and was virtually degenerate near the resonance

frequencies of the antenna array element EVs.
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The above results are crucial for metastructure
analyses because they allow us to use a compact set of
EFs with significant amplitudes in the neighborhood
of the considered frequency as projection functions.
For finite-size arrays, the SLAE can be solved direct-
ly. The SLAE has the smallest matrix size at the reso-
nant frequencies when the current distribution over

the elements is determined by only one EF (degen-

erate current distributions). In this case, finding the
EVECs of the antenna array that define a finite set
of distributions of the complex amplitudes of the de-
generate current distributions on the array elements
is beneficial. The authors aim to solve this problem
and determine the characteristics of the scattered
field for the considered array in resonant and non-

resonant cases.
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Conclusion

This study presented a systematic approach to
the rigorous solution to the internal electrodynamic
problem for multielement antenna arrays. The ap-
proach was based on the Gauss-Seidel or Jacobi-type
iterative procedures applied to the block matrix of
the SLAE obtained using the method of moments [15].
This approach implied the use of a priori information
about the array to implement efficient algorithms for
the analysis of the SLAE block matrix [18]. Moreo-
ver, this study showed the feasibility of determining
the spectral characteristics of the integral operators
of the internal problem for single elements that are
part of the antenna array. The solution resulted in
the determination of the EFs and EVs of the integral
operators and their frequency dependence. The iden-
tification of EFs allowed us to reasonably select the
systems of projection functions used in the method of
moments to generate the SALE block. The EV versus
frequency relationship allowed us to predict the reso-
nances in multielement arrays.

This paper demonstrated the application of the
proposed approach to solving the intrinsic problem
for a specific regular 2D array consisting of conical
spiral elements excited by a plane linearly polar-

ized electromagnetic wave. We also identified the

relationship between the frequency dependence of
the integral operator’s EV numbers determined for
a single array element and the resonances occurring
in the array and confirmed the relationship between
the resonances and the convergence of the iterative
process. We studied the spectra of the current distri-
bution functions for the array elements. The ampli-
tude spectra at different elements of the array were
very similar, so the averaged amplitude spectra can
be used in the analysis. We found that the averaged
spectrum of the external field at the array elements
was relatively broad, whereas the averaged spectrum
of the current distribution functions was close to de-
generate and was virtually degenerate near the reso-
nant frequencies. These features allowed us to use a
compact set of EFs with significant amplitudes in the
vicinity of the studied frequency as projection func-
tions. It ultimately led to a reduction in the SLAE ma-
trix block sizes and significantly simplified the solu-
tion to the internal problem.

The presented results once again confirm the effi-
ciency of the iterative approach to the rigorous solu-
tion to the internal electrodynamic problem for mul-
tielement arrays in nonresonant cases. The authors
propose introducing resonance identification proce-
dures. The internal problem in the neighborhood of
resonance frequencies requires special attention.
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PeireHue BHyTpeHHeM 3aa4yM AJis KOHEYHOM peryasipHOM
ABYMEPHOHU pelleTKU CMUPATBHBIX 3JIEMEHTOB,
BO30Y)K/1aeMOM IIOCKOU 3IEKTPOMATHUTHOM BOTHOM

II.IT1. Ta6axos! ®, B.M.A. Anv-Hoazatinu?

1 MoBomKckuii rocynapcTBeHHBINH YHUBEPCHTET TeleKOMMYHUKAIME M HHGOPMATHKH
443010, Poccus, r. Camapa,
yn. JI. Toncroro, 23
2 CamapcKuit HAIIMOHABHBIN MCCITe0BATENbCKUIT YHHBEpCUTET HMeHH akafemuka C.I1. Koponesa
443086, Poccus, r. Camapa,
MockoBckoe mocce, 34

Annomayua - O6ocHoBaHue. Pa6oTa HampaBieHa Ha PasBUTHE U HMCCIELOBAHHE CTPOrMX METOJOB pELIeHHsI BHYyTpPEHHEH
3afa4y 9JIeKTPOJUHAMUKH [Isi MHOT03JIEMEHTHBIX CTPYKTYP (METACTPYKTYP), COCTOSILIIUX U3 KOHEYHOT'O YKMCIIA DJIEMEHTOB, & TAKKE
Ha HCCJIe[loBaHKe MPOTEKAIMIMX B HUX QU3HYECKUX MPoLeccoB. YacTHBIM CIydaeM MOLOGHBIX CTPYKTYp SIBIISIIOTCSI JByMepHBIE
peleTkr ¢ QUKCHPOBAHHBIM MEXIJIEMEHTHBIM PACCTOSIHUEM, COCTOSILIME U3 OJUHAKOBBIX 3JIEMEHTOB, HMEIOLIUX OfHY U Ty e
[IPOCTPAHCTBEHHYI0 OpHeHTanuio (perynsipabie peurerky). Llens. Ha ocHOBe MTepalHOHHOIO MOAXOMA OCYIIECTBISIETCS PeLIeHHE
BHYTPEHHEN 3a/laud 3JIeKTPOAWHAMUKHU [UIsl KOHEYHOW pPEery/isipHOM NBYMEPHOM peLIeTKH CIUpPaNbHBIX 37€MeHTOB. C Lesbio
[OJIyYeHHUs APUOPHON HHOPMALMK 06 3JIEKTPOAMHAMUYECKMX XapPAKTEPUCTHKAX 3JIEMEHTOB pelleTKH ¥ 060CHOBAaHHUs BbIGOpa
CHCTEM MPOEKUMOHHBIX PYHKIMH OCYIECTBIISETCS] AaHATIM3 CIIEKTPAIbHBIX XapAKTEPUCTUK HHTErPAbHOIO OllepaTopa BHYyTPEHHEH
3afa4y U151 OOMHOYHOIO CIIMPATIBHOIO 3JIeMEHTa. 3aTeM [IPOU3BOAMUTCS pacyeT TOKOB Ha dJIEMEHTAX CTPYKTYPBbI, ONPENEeIISIOTCS UX
CIIEeKTpa/IbHbIE XaPAKTEPUCTUKH. Pe3y/ibTaThl ClIEKTPATIbHOTO aHAJIK3A MIO3BOJISIOT TOBBICUTD 3G $EKTHBHOCTD pellleHU sl BHYTPEeHHeH
3agayd. Meronsl. B ocHOBe MCCIIeOBaHUM JIEXXUT CTPOrMH 3JIEKTPOAMHAMUYECKUH MTOAXO[, B pAMKaX KOTOPOIO AJIsl yKa3aHHOM
CTPYKTYpbl B TOHKOIPOBOJIOYHOM MpUONUKeHUH (OPMHUPYETCS HHTErpajbHOE MpPEeACTaBIeHne 3JeKTPOMATHUTHOTO MO,
CBOAsLLEECs TIPH PACCMOTPEHUH Ha MOBEPXHOCTH MPOBOLAHUKOB COBMECTHO C PAHUYHBIMH YCIOBHSIMUA K CUCTEME MHTETPabHBIX
ypaBHeHHH Dpenronbma BTOPOro poaa, 3aliCaHHbIX OTHOCHTEIbHO HEU3BECTHBIX PACIIPE/ie/IeHN I TOKA HA IPOBOAHUKAX (BHYTPEHH 51
3apaya). PellleHre BHyTpeHHEH 3ajauy B paMKaxX METOIa MOMEHTOB CBOAUTCS K petueHuio CITAY ¢ 6;1049HOM MaTpuLied. Pe3ynbraTsl.
[IpennoxeHa MaTeMaTHYecKasi MOJE/Ib KOHEYHOW [BYMEPHOW PpEIUeTKH CIUPAIbHBIX 3JIEMEHTOB H3/Ty4aioliedl CTPYKTYpBbI.
[l1s1 yKasaHHOM CTPYKTYpbI B Cilydae ee BO30YXKAEHUsI IUIOCKOHM 3JIEKTPOMArHWTHON BOJIHOM Ha OCHOBE MTEPALMOHHOIO MOAXOMA
pelleHa BHYTPEHHsIsl 3aaya dJIeKTPOAMHAMUKH. B LIMPOKON MOJIOCE YACTOT MPOBEIEHBI: aHAIU3 CXOOMMOCTH MTEPALMOHHOIO
npoLecca, CIeKTPalbHbIM aHAIN3 HWHTErpaJbHOrO ONepaTopa BHYTPEHHEH 3afaud Ul OJUHOYHOTO CHHPAIBHOIO 3JJIEMEHTA,
a TaKKe CIEeKTPalbHbIN aHann3 GpyHKLMHA CTOPOHHETO MOJIsl K TOKOBBIX GpYHKIMH Ha d/IeMeHTax pelleTk. 3akinodeHue. [lokazaHa
11e71eCO06PAa3HOCTD ONpeeIeHHsl CIIEKTPATBHBIX XaPAKTEPUCTHK HHTErPaIbHBIX ONIEPATOPOB BHYTPEHHEH 3a/1auH ISl 9JIEMEHTOB,
06pasyoiux METaCTPYKTYpPy. BbisiBlieHa CBSI3b MeXKy YaCTOTHON 3aBUCHMOCTBI0 COGCTBEHHBIX YMCENl MHTErPAIBHOTO OllepaTopa
BHYTpEHHEH 3a/layl ONMHOYHBIX JJIEMEHTOB, OOPa3yIIHX METACTPYKTYPY, C PE30HAHCHBIMU SIBIIEHHUSIMH, BO3HHUKAKOIIMMU B
METacTPyKType, MOATBEPXKAEHO BIUsHME PE30HAHCOB HA CXOOMMOCTb MTEPALMOHHOrO mporecca. [loka3aHa 1e1ecoo6pasHoCThb
PacCMOTPEHUS YCPELHEHHBIX aMIUITUTYHBIX TOKOBBIX CIIEKTPOB. BBISIBIIEHO, YTO YCPELHEHHBIN CIIEKTP TOKOBBIX GYHKUNHN GIH30K
K BBIPOXKAEHHOMY, 0COGEHHO BOIM3M PE30HAHCHBIX YAaCTOT. DTO MO3BOJISIET MCIOJIB30BATh B KaYeCTBE MPOEKIMOHHBIX GYHKIUHI
KOMIIAKTHBIH Ha60p COGCTBeHHBIX GYHKLUMH, HMEIOMINX CYLeCTBEHHbIE aMIUIUTY[Abl B OKPECTHOCTH HCCIENyeMOH 4acTOThI, YTO
CYLLLECTBEHHO YIIPOLIAET peLleHHe BHYTPEHHEH 3aja4H.

Kniouesvie cnosa — MeTacTpyKTypa; CIHMpalbHasi CTPYKTypa; WHTerpasbHOe ypaBHeHHe (Dpenrosbma; TOHKONPOBOJIOYHOE
npubIMKeHNe, UHTErpalbHOE MpPeACTaBIeHWe 3JIEKTPOMATHUTHOTO MOJIsl; PE30HAHC; paclpefeneHHe Toka; Meron laycca -
3empens; MeTos cO6CTBEHHBIX GYHKLUH.
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