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Abstract - The article considers mathematical models of two spheroidal spiral-frame emitters, built on the basis of a general
approach involving the use of an integral representation electromagnetic field. The internal problem of electrodynamics is
reduced to a system of Fredholm integral equations of the 1st kind. The resulting system was solved by the method of moments
with piecewise constant basis functions and delta functions as test functions. In this case, the local linearization of the generating
conductors of the structures under consideration was carried out. The dependences of current distributions, input resistance, and
radiation characteristics of structures on frequency have been studied. It is shown that standing, traveling, and mixed current
waves can exist in the structures under consideration. The current regime is determined by the wave sizes and the geometry
of the structures and determines the behavior of the wave resistance in the frequency range. Despite the similar geometry, the
characteristics of the considered structures have certain differences.
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Introduction

Helical antennas (HAs) represent a wide class of
radiating structures, whose geometry and character-
istics meet predetermined and diverse requirements.
The main advantages of HAs include the ability to
achieve a wide operating frequency band, good radia-
tion directivity characteristics, the ability to electri-
cally control the polarization characteristics of the
radiation, and various shapes of emitting elements.
Subject to the principle of angles and complementa-
rity, frequency-independent variants of HA are im-
plemented, the overlap coefficient of which reaches
several tens of units [1]. HAs are used in antenna
technology as self-sufficient radiating structures, as
feeds for mirror antennas, in phased antenna arrays,
to construct slow-wave systems, and in other ele-
ments of microwave devices [2].

Currently, interest in spiral elements is also associ-
ated with the development of the theory of metama-
terials [3], while chiral structures can be considered a
special case [4]. The introduction of conductive par-
ticles of various configurations (in this case, spiral
particles) into the source material changes its elec-
trodynamic properties. Such structures can be used
as frequency-selective elements in polarization con-
verters as low-reflective coatings and microwave en-
ergy concentrators. Naturally, the construction of the
abovementioned structures requires the presence of
mathematical models (MMs) of their basic elements,
which in this case are spiral elements, generally de-
scribed by sufficiently numerous parameters. Cur-
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rently, phenomenological equations operating with
the chirality parameter y are used to study chiral
structures [4-6]. The value and sign of y depend on
the wavelength and the type of basic elements. y is
determined using approximate methods. However,
the use of phenomenological equations has impor-
tant limitations associated with the relative position
and wave sizes of the elements forming the structure.
In general, for metamaterials, the practice of de-
scription based on effective dielectric and magnetic
permeabilities, which generally have a tensor form,
is considered acceptable. Approximate and rigorous
approaches are used to analyze the helical structures.
Within the framework of approximate approaches,
the original emitter is replaced with a simplified
equivalent (e.g., an array of ring elements, a single
ring element, or an anisotropic conductive model).
[2; 7]). Moreover, these approaches can be considered
most adequate when applied to regular spiral struc-
tures. When studying irregular structures, the princi-
ple of local equivalence is used, further reducing the
correspondence of the approximate solution to the
exact solution of the problem.

The problem with the currently existing exact
methods used in computer-aided design systems
(CST MWS, FEKO, and HFSS) is the high require-
ments for computing resources, which are a conse-
quence of their versatility, as well as the numerical
nature of the results obtained, which cannot always
be interpreted correctly. Therefore, the construction
of rigorous and computationally efficient MMs of
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Fig. 1. Geometry of the structures under study: without a break (a) and with a break (b)
Puc. 1. TeoMeTpust HCCIEAyeMBIX CTPYKTYP: 6€3 usnoma (a) u ¢ usnomom (6)

spiral elements and structures using these elements
as their basis is a relevant task.

The most accurate MMs are constructed on the ba-
sis of integral equations (IEs) of various types [8-11].
The most widely used MMs are in the form of Fred-
holm IE systems of the first kind, obtained using the
thin-wire (TW) approximation [12]. Herein, the com-
plete MM of the structure under consideration must
comprise the solution of exterior (determination of
EMF [electromagnetic field] at any point in space)
and interior (determination of current functions from
boundary conditions on the elements of the structure)
electrodynamic problems. The IE system represents a
solution to only an internal problem. Therefore, the
MM should be constructed on the basis of the cor-
responding integral representation of the EMF (EMF
IR), which maintains a continuous relationship be-
tween the current functions and their EMF generated
at any point in space.

In [13], based on TW EMF IR, the construction of
MDMs of cylindrical spiral elements of two types (con-
ventional and combined) was performed. The prob-
lem of diffraction of these elements has been solved.
It was revealed that the interior structure of the ele-
ment considerably influences the scattered field char-
acteristics. Thus, on a combined spiral element in a
rather wide frequency range, the effect of orthogonal
scattering occurs when the angle between the wave
vectors of the primary and scattered electromagnetic
waves is near 90°.

In [14], an ellipsoidal spiral particle was discussed,
in which the MM was also constructed on the basis of

the TW EMF IR. At the same time, a detailed analy-
sis of the solution to the spectral problem was per-
formed, which consisted of determining the behavior
of the eigenfunctions and eigenvalues of the integral
operator in the frequency band. It was demonstrated
that the solution to the interior problem as a whole
is determined by the eigenfunctions that have the
smallest absolute value of the associated eigenvalues.

In this article, the MMs of two types of spiral-
frame emitters are proposed, for which a numerical
solution of the interior problem is studied in the fre-
quency range. The radiation characteristics and in-
put resistance are then determined. These emitters
can be used as self-sufficient antennas or as a part of
more complex antenna systems.

1. Physical models and geometry
of the radiating structures

The geometry of the emitters is shown in Fig. 1.
Both structures include a straight axial conductor A’A
located along the axis O, and a pair of spiral conduc-
tors AP and A’P connected to each other at a point P
and at the corresponding ends A and A’ of the axial
conductor. The structure presented in Fig. 1a con-
tains a regular ellipsoidal helix (hereinafter referred
to as A-helix). The structure presented in Fig. 1b com-
prises a spiral with a kink, and its lower part is a mir-
ror image of the upper part relative to the plane XOY.

The structure conductors have the same radius,
equal to ¢ =\, where XA is the radiation wavelength.
At point G, the axial conductor has a gap of length
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2b =2, which comprises an external field source
(EMF generator). The tangential component of the
external field on the conductors E'™ is zero every-
where, except the discontinuity region, where it is
equal to U/(2b), where U is the EMF generator volt-
age. Under the influence of an external field, a distri-
bution of electric current I(l) arises in conductors, the
type of which must be determined when solving an
interior electrodynamic problem. Because 2b =2, the
function I() is continuous in the discontinuity region.
In addition, when constructing the MM, we assume
that the conductors have infinitely large conductivity.

The generalized parametric equation of the spiral

generatrix L  has the form:

L, : 1(p)=acos(gp)cospx + (1)
+ af(p)cos(cp)sin @y + csin(co)z,
¢=1/2N)),p €[-1;1]-N;.

Here, a is the spheroid radius, and ¢ is its semiaxis;
¢ is a parameter on the generatrix (essentially the
azimuth of the cylindrical coordinate system), and N,
is the number of helical turns. For A-helix, f(p)=1,
and for B-helix, f(p)=sgn(p), where sgn(p) is the
sign function. For the transition in Eq. (1) from a pa-
rameter @ to a natural parameter [, it is necessary to
define the function ¢ =(l) inverse to the function:

® ’
l((P>=_[ afl((P)

0 aq)
and substitute it into Eq. (1). In this case, this prob-
lem can only be solved numerically using the inverse

dg’, (2)

interpolation method [15]. The equation for the axial
conductor L, is written directly in the natural param-
eter I:

le[—c;cl. 3)

2. MMs of the radiating structures

To construct MMs of emitters in the previously
considered formulation, an EMF IR is used [13]:

ZF rr,l); F=EH, (4)

Here,

F(rr,, 1) = II (KE (e, (")dl', F =EH (5)

is the EMF IR from the current I]- (I), localized on the
TWS generatrix L.,

W,
K, (r,r; () = lk( LIK2G, (v, (1) +

+ 2 {tr =08, e >>)];

K (r,1.(1) = ((r—r-(l’))xil-(l’))B (r,r

bl j j ) ](l ))’
are the kernels of the EMF IR; 1. () ()/dl is the
tangent unit on the generatrix L; W is the wave im-

pedance of the medium, and k is its wave number;
i exp(—ikR
KR+, p( ),

R2 4mR

B=-

G(R) is Green’s function defined for free space;
R(r,r')=|r—r'| is the distance between the source
and observation points;

F(e,5(I)= F(R,(r,(1)), F=G,B

are kernel components, and

R, (r,5;(1) = 2

is the distance between the source and observation

|rr )2 +e

points, regularized by a small parameter &, whose
function is performed by the radius of the conduc-
tors. In our case, Eq. (4) involves a pair of conductors
Ly =L, and L, = L.

The integral representation of the EMF of Eq. (4)
contains current functions Ij(l), to be determined.
This can be achieved by applying a boundary condi-
tion on the surface of the conductors. Because ¢ =2,
the boundary condition can be weakened by moving
from the surface of the conductors to their genera-
trices. Thus, we obtain the following:

i(r(l))~(E<i"><r<l>>+E<r<l>>)=o. 6)

The result of applying the presented boundary
equation to the EMF IR is a system of IEs of the form:

—i(ri) ZE 1 ,I] (7)

i,j=1,...,N.

The given IE system is classified as a Fredholm IE
system of the first kind [16]. Let us discretize Eq. (4) by
replacing the generators with kinked curves:

N}

L > L T N+ ®

2 SRR PPN
where N]- +1 is the number of nodes of the kinked
curve, and j is the index of the conductor. For each
kinked curve, we can determine the following equa-

tion of the (j,kj) -segment:

ik, = K ; +i;,k].l> le[-A; /24, /2], ©)
Here,

* ]k +17F1 k +1

iy 10
- rj,k].+l - rj,k].+1

lj,kj :A—j’ j =l k1T 41 |
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is the center of the segment, the unit tangent vec-
tor on the segment, and its length, respectively,
kj =1,...N;+1. Let I be the complex amplitude of

the current (j,kj)—segment. Then, for the discretize

generatrices based on Eq. (4), we obtain the EMF IR

of a set of N emitters having segmented generatrices:
N Nj Ai/2

F(r) = ZZIj’kj j KF (65 (O, F=EH. (1)
==l A2

Use of Eq. (11) presupposes knowledge of unknown

current amplitudes L . Within the chosen method

7

for solving the IE system, a boundary condition of the
Eq. (6) type must be fulfilled at the centers of the seg-
ments. Consequently, we have the following SLAE
(system of linear algebraic equations):

N N}. Aj/Z

Ak . Ak E , ,

T B 0= 33 TR (653, (0, (12
==t T A2

izl,...,N) kizl,...,Ni.
If the condition is met that

2e<A; <12 (13)

for all j values, a stable solution of the SLAE is ob-
tained [12]. The reliability of the results obtained on
the basis of Eq. (11) and Eq. (12) is confirmed in [17].

3. Results of the numerical modeling

During numerical modeling, A- and B-helices were
studied, the geometry of which was determined by the
following parameters: a/c=1/4, 1/2, 3/4, and 1;
the number of segments of the spiral element in the
indicated cases was equal to 200, 400, 600, and 800,
respectively; and the number of segments of the axial
conductor was 80 for all a/c¢ values. The number of
turns of the spiral element was equal to five, and the
ratio of the radius of the conductor € to the semiaxis
cwas g/c=3/1000. The specified choice of geomet-
ric parameters satisfies the condition of Eq. (13), the
implementation of which provides a correct solution
to the interior problem. The doubled semiaxis c of the
structures, which determines their height, was cho-
sen as the main parameter normalized to the wave-
length A.

Fig. 2 presents the results of calculating the am-
plitude current distributions on the conductor AP of
both structures for various ratios 2c/A at a/c=1/2.
The value 2¢/A is indicated directly in the figures.
According to the figure, at 2¢/X < 0,5 a standing cur-
rent wave regime is established in the spiral conduc-

tors, and the distributions for the A- and B-helices
have several differences. This regime emerges be-
cause radiation losses at distances commensurate
with the wavelength are quite small. Consequently,
in a spiral conductor, there is a pair of counterpropa-
gating traveling waves with a practically unchanged
amplitude. Their sum represents a standing wave,
which we can note in this figure at 2c/A =0,05, 0,25,
and 0,5. At 2¢/A =0,6, a mixed current wave mode is
established in the spiral; counterpropagating waves
have the greatest amplitude difference on the spiral
near points A and A’, and the smallest difference is at
point P. Therefore, the standing current wave mode
remains near point P. It is quite reasonable to state
that for the indicated ratio 2c/A =0,6, traveling and
standing current waves make a commensurate con-
tribution to the total field created by the structures
under consideration, but the traveling waves of the
A-helix lose energy more intensely than those of the
B-helix; thus, differences in the calculation results for
the structures under consideration become more no-
ticeable. At 2c/X=0,75 and 1,0, radiation is created
predominantly by traveling waves, whose amplitude
decreases considerably as they approach point P.
The amplitude of standing waves in the A-helix near
points A and A’ is noticeably higher, but in general,
the current distributions are approximately identical.

Figs. 3-6 show the results of calculating the input
resistance of the structures under consideration for
four ratios a/c. In terms of the input resistance for
the structures under consideration, two regions can
be conventionally distinguished: the low-frequency
(LF) and high-frequency (HF) regions. In the LF re-
gion (Fig. 3, 4), in the current distribution along the
conductors, standing waves are predominant, which
forms the resonant nature of the dependence of the
input resistance on frequency. The quality factor of
the resonances directly depends on the degree of
dominance of standing waves. In addition, as is seen
from Figs. 3 and 4, it has an inverse dependence on
the ratio a/c. In general, the dependence of the input
resistance on frequency is very similar for A- and B-
helixes in the LF region.

In the HF region, the dependence of the input
resistance on frequency at a/c>0,5 is smoother
(Fig. 5, 6). The uniformity of the input resistance is
noticeably higher for the B-helix than for the A-he-
lix. According to Fig. 5, for an A-helix with the con-
sidered number of turns, the deviation of the input
resistance from the average value is minimal at an
optimal value of a/c (in this case a/c=0,5). In the
HF region, the input resistance has a capacitive com-
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Fig. 2. Comparison of the amplitude distributions of the current on the conductor AP of the A-helix (curve 1) and B-helix (curve 2) at

different values 2¢/X; a/c=1/2

Puc. 2. CpaBHeHMe aMIUIMTY[HBIX pacrpejeleHUH ToKa Ha mpoBonHuKe AP A-cnupanu (kpusas 1) u B-cnupanu (kpusas 2) npu pas-

JIMYHBIX 3HaYeHUsAX 2¢/A; a/c=1/2

ponent in the structures under consideration. With
the lowest a/c value considered equal to 1/4, the
frequency dependence of the input resistance is in
many ways reminiscent of a similar dependence for a
symmetrical electric dipole.

Fig. 7 presents a comparison of the normalized am-
plitude directional patterns (DPs) of the considered
emitters in the meridian plane, calculated at differ-
ent ratios of 2c¢/A and a fixed value a/c=1/2. At
2¢/ A <0,25, the DP is toroidal, repeating a similar
DP of a symmetrical dipole. This result is obtained
because the transverse size of the emitters is much
smaller than the radiation wavelength. It is also seen
that the spiral conductor structure does not substan-
tially affect the radiation characteristics, and the DP
of the A- and B-helices coincides with the graphical

accuracy. A further increase in 2¢/A to 0,5 leads to
the disappearance of radiation zeros toward the A’A
axis. With 2¢/A > 0,6, the DP becomes near spheroi-
dal. In this case, the differences in the DP of the A-
and B-helices also increase.

Conclusion

This study considers two variants of spheroidal spi-
ral-frame emitters (A-helix and B-helix). The emitters
differ in the internal structure of the spiral elements.
Note that HAs, which have a geometry near that of
the emitters considered, are widely used in practice.
MDMs of emitters are proposed and constructed on
the basis of an integral representation of the electro-
magnetic field recorded in the TW approximation.
These MMs allow for a quantitative assessment of the
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electrodynamic parameters of the structures under
consideration. The interior problem is described as
a system of Fredholm IEs of the first kind. A method
for reducing it to a SLAE presented with respect to
unknown values of complex current amplitudes on
segments is presented, and a condition is given for
correctly implementing this procedure.

Based on the models presented, numerical solu-
tions were obtained for the interior and exterior
electrodynamic problems. For some ratios a/c in
the range of values 2c¢/A, the current distributions,
input resistance, and normalized radiation patterns
were calculated. Physical interpretation is given to
the results obtained. It is shown that in the structures
considered, depending on the ratio 2¢/A, the regime
of a standing, traveling, or mixed current wave can
be implemented. The standing wave mode occurs at
small 2c/A, and the traveling wave mode is charac-

teristic of 2¢/A >3/4. Analysis of the dependence
of the input resistance on 2c/A showed a close rela-
tionship between the current mode and the behavior
of the input resistance. In addition, in the process of
analyzing the results of the input resistance, it was
established that the B-helix has greater uniformity
of the input resistance at 2c/A > 0,6, and for the A-
helix, minimum unevenness is achieved at an optimal
ratio a/c. An analysis of the radiation characteris-
tics showed that at small ratios of 2c/A the normal-
ized DP coincides in shape with the DPs of a sym-
metrical electric dipole; with an increase in 2c¢/A,
the DP becomes near ellipsoidal. In the future, we
plan to increase the computational efficiency of the
proposed models using optimal systems of projection
functions and analyze in more detail the numerical
results for various ratios of the geometric parameters
of the structures.
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MaremaTuyeckue moaenu cpepongaaTbHbIX
CIIMPAIbHO-PAMOYHBIX U3Iy4yaTenen

[.I1. Tabakos, P.M. Banuynnun

TTOBOJIKCKHH rOCYyAapCTBEHHBIH YHUBEPCUTET TeJIEKOMMYHHKALMH 1 HHPOPMATHKH
443010, Poccus, r. Camapa,
yin. JI. Toncroro, 23

Annomayua - B craTbe pacCMOTPeHBI MaTeMaTHYeCKHe MOMEeNH [BYX CdepOHfaNbHBIX CIHPaTbHO-PAMOYHBIX
u3TydaTesiel, MOCTPOEHHBIE Ha OCHOBe OOLIEro MOAXOAA, MPeAIoaralollero UCIoab30BaHHEe MHTETPAIbHOTO NMpefCTaBIeHUs
3JIEKTPOMATHUTHOTO 1oJis. [loCTpOEHHE MOMENIEN OCYIECTBISIOCH B TOHKOIPOBOJIOYHOM NPUOIUKEHUU. BHyTpeHHss 3anada
37IeKTPOAAMHAMUKHU CBefeHa K CHCTeMe HMHTerpanabHbIX ypaBHeHHH Ppearonbma 1-ro popa. PelleHune momyuyeHHONH CHCTEMBI
OCYILECTBIIAZIOCHh METOIOM MOMEHTOB C KyCOYHO-TIOCTOSIHHBIMU 6GasUCHBIMU QYHKLUUAMU U [elbTa-pyHKLUHUSAMH B Ka4eCTBE
TeCTOBbIX (GyHKUUH. [Ipy 9TOM OCYILeCTBIsIACH JIOKaJbHAs JMHeapu3aunus o6pasyloliuX POBOLHUKOB PacCMaTpPUBAEMBIX
cTpykTyp. IIpoBeneHBl HcClaefOBaHUS 3aBUCHMOCTEH paclpefieleHHH TOKOB, BXOJHOTO COMPOTHBIEHHUS U XapaKTePUCTUK
W3IIy4EeHUsl CTPYKTYP OT 4acToThl. [loKa3aHo, YTO B pacCMATPUBAEMBIX CTPYKTYPax BO3MOXKHO CYLIECTBOBAHHE CTOSTYUX, OETYLIMX
Y CMeIIaHHBIX BOJIH TOKa. PeXXMM ToKa oIpe/esieTCst BOJIHOBBIMH pa3MepaMU U FreoMeTpUel CTPYKTYP U OIpejesisieT XapakTep
MOBeJIeHUsI BOJTHOBOT'O CONIPOTHB/IEHHU s B JHana3oHe 4acToT. HecMOTps Ha CX0XKylo FeOMeTpHIO, XapaKTePUCTHUKHU PACCMOTPEHHBIX
CTPYKTYp UMEIOT Ollpe/ieJIeHHble OTINYUS.

Kniouesvie cnosa - cnupanbHble aHTEHHBI; PAMOYHble aHTEHHBI; HHTErpaJIbHOE Mpe/iCTaBlIeHHe 3JIeKTPOMArHUTHOIO IOJIS;
TOHKOIIPOBOJIOYHOE NPHUGIHKEHHE; AHarpaMMa HalpaBIeHHOCTH; BXOJHOE COIIPOTHBIIEHHE.
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