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Аннотация: исследуются методы оптимизации архитектур программируемых логических интегральных схем 

(ПЛИС) для эффективной реализации нейросетевых декодеров блоковых кодов, включая коды с низкой плотностью 
проверок на четность (LDPC), полярные и Боуза — Чоудхури — Хоквингема (БЧХ) коды. Основное внимание уделя-
ется аппаратным модификациям, позволяющим достичь оптимального баланса между точностью декодирования и 
вычислительной эффективностью. Разработаны и проанализированы специализированные архитектурные решения 
для ПЛИС, включающие модифицированные схемы таблиц поиска (LUT) с адаптивной битовой глубиной, аппарат-
ные ускорители для операций проверки узлов в режиме реального времени. Разработанные решения особенно акту-
альны для итеративных алгоритмов декодирования (Min-Sum) применительно к LDPC-кодам, где требуется интенсив-
ная обработка мягких решений. Экспериментальные результаты показывают увеличение пропускной способности де-
кодера на 30 % по сравнению с традиционными реализациями, снижение энергопотребления на 20 % при сохранении 
корректирующей способности, возможность динамической адаптации параметров декодирования для различных ти-
пов блоковых кодов. Предложенные архитектурные решения демонстрируют особую эффективность при обработке 
длинных кодовых слов (n > 1000), характерных для современных систем связи 5G/6G и систем хранения данных 
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Введение 
1 

Современные системы связи 5G/6G и сис-
темы хранения данных предъявляют повы-
шенные требования к эффективности декоди-
рования блоковых кодов, таких как LDPC, по-
лярные и БЧХ-коды. Традиционные алгорит-
мы декодирования сталкиваются с фундамен-
тальными ограничениями при работе с длин-
ными кодовыми словами и в условиях низкого 
отношения сигнал/шум. Нейросетевые подхо-
ды к декодированию демонстрируют перспек-
тивные результаты, превосходя по точности 
классические методы, однако их широкое вне-
дрение сдерживается высокой вычислительной 
сложностью и значительными требованиями к 
аппаратным ресурсам [1, 2]. 

В данной статье представлена оптимиза-
ция архитектур программируемых логических 
интегральных схем (ПЛИС) для эффективной 
реализации нейросетевых декодеров блоковых 
кодов. Основное внимание уделено модифика-
циям логических блоков, позволяющим значи-
тельно повысить плотность выполнения опе-
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раций умножения с фиксированной запятой (4-
9 бит) и операциям блока умножения-
сложения (MAC), реализуемых в программи-
руемая логическая структура (soft fabric), при 
минимальных затратах площади и задержки. 

 
Ускорение глубокого обучения на ПЛИС 

 
Несмотря на высокую гибкость и реконфи-

гурируемость ПЛИС, реализация специализи-
рованных операций декодирования для LDPC, 
полярных и БЧХ-кодов остается ресурсоемкой 
задачей. Особые сложности возникают при реа-
лизации итеративных алгоритмов проверки уз-
лов для LDPC-кодов, схем последовательного 
исключения для полярных кодов, алгебраиче-
ских операций декодирования БЧХ-кодов. 

Для эффективного использования ресур-
сов ПЛИС разрабатываются специализирован-
ные версии алгоритмов декодирования, а 
именно вантованные версии Min-Sum алго-
ритма для LDPC, аппроксимированные схемы 
SC-декодирования для полярных кодов, опти-
мизированные реализации алгоритма Берле-
кэмпа-Месси для БЧХ. 
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В качестве базовой платформы для реали-
зации алгоритмов декодирования выбрана 
ПЛИС Intel Stratix 10, обладающая высокой 
вычислительной плотностью и оптимизиро-
ванной архитектурой для выполнения специа-
лизированных операций. Ключевым элемен-
том этой ПЛИС является модуль адаптивной 
логики (ALM), который обеспечивает гибкость 
при реализации как логических, так и арифме-
тических операций, критически важных для 
декодирования кодов. 

На рис. 1 представлена структура ALM, 
включающая 6-разрядный LUT, конфигури-
руемый в виде двух 5-разрядных LUT, 2 бита 
упрочненной арифметики (два сумматора) с 
выделенными цепями переноса, 8 входов             
(A-H) и 4 выхода (O1-O4). 

 

 
 

Рис. 1. Упрощенная архитектура ALM Stratix 10 
 

ALM поддерживает два основных режима 
работы: 

- Обычный режим, позволяющий реали-
зовать одну логическую функцию с 6 входами 
и две функции с 5 входами (или меньше), ис-
пользующие не более 8 различных входов (на-
пример, два независимых 4-разрядных LUT 
или два 5-разрядных LUT с двумя общими 
входами). 

- Арифметический режим, который опти-
мизирован для выполнения операций сложе-
ния: четыре 4-разрядных LUT подаются на 
входы двух сумматоров и поддерживается ло-
гика предварительного сложения при исполь-
зовании ≤ 6 входных сигналов. 

При реализации умножения в контексте 
кодов с низкой плотностью проверок на чет-
ность (LDPC), полярных и БЧХ-кодов, когда 
отображение умножается с использованием 
адаптивных логических модулей (ALM), после 
начального этапа сложения частичных произ-

ведений (первый каскад сложения) дальней-
шее сокращение разрядов выполняется исклю-
чительно с помощью цепочек сумматоров. В 
такой конфигурации LUT (таблицы поиска) 
используются лишь для передачи входных 
данных на жестко заложенные сумматоры, что 
приводит к неэффективному расходованию 
ресурсов ALM. Это особенно критично для 
декодеров LDPC и полярных кодов, где высо-
кая плотность вычислений требует оптимиза-
ции использования кристалла [3]. 

Для решения этой проблемы предлагается 
модифицированная архитектура ALM, пока-
занная на рис. 2, в которой добавлен второй 
уровень цепочки переноса.  

 

 
 

Рис. 2. Модифицированная архитектура ALM  
с дополнительных цепочками для переноса  

 
Это позволяет задействовать два допол-

нительных сумматора (выделены цветом на 
рисунке), подключенных к выходам первой 
цепочки переноса и ранее неиспользуемым 
входам ALM (E и F) в арифметическом режи-
ме. Благодаря этому второй уровень суммато-
ров может выполнять дополнительный этап 
сокращения внутри тех же ALM, исключая 
необходимость задействования дополнитель-
ных модулей и простаивающих LUT, как в 
стандартной архитектуре Stratix 10. Блок-
схема для модифицированной архитектуры 
ALM показана на рис. 3, алгоритм описан ни-
же. 

Входными данными выступают два набо-
ра частичных произведений (PP1, PP2), полу-
ченных при умножении (например, в декодере 
LDPC/полярных/БЧХ-кодов). Входы ALM (A, 
B, C, D, E, F), где E и F ранее не использова-
лись в арифметическом режиме. 
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OPTIMIZATION OF FPGA ARCHITECTURES FOR NEURAL NETWORK DECODING BLOCK 
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Abstract: this paper explores methods for optimizing programmable gate array (FPGA) architectures for the efficient 

implementation of neural network decoders for block codes, including low-density parity-check (LDPC), polar, and Bose-
Chaudhuri-Hocquenghem (BCH) codes. The focus is on hardware modifications that enable achieving an optimal balance be-
tween decoding accuracy and computational efficiency. Specialized architectural solutions for FPGAs are developed and ana-
lyzed, including modified lookup table (LUT) schemes with adaptive bit depth and hardware accelerators for real-time node 
checking operations. The developed solutions are particularly relevant for iterative decoding algorithms (Min-Sum) applied to 
LDPC codes, which require intensive soft-decision processing. Experimental results demonstrate a 30% increase in decoder 
throughput compared to traditional implementations, a 20% reduction in power consumption while maintaining correction ca-
pability, and the ability to dynamically adapt decoding parameters for different types of block codes. The proposed architectur-
al solutions demonstrate particular efficiency when processing long codewords (n > 1000), typical of modern 5G/6G commu-
nication systems and data storage systems 
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