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Аннотация: решается проблема повышения энергоэффективности фотоэлектрических преобразователей (сол-

нечных батарей), работающих в условиях с нестационарной плотностью светового потока и переменной нагрузки. 
Существо этой проблемы заключается в экстремальном характере ватт-амперных характеристик преобразователей, 
положение максимума отдаваемой мощности в которых изменяется в соответствии с указанными условиями эксплуа-
тации. Это обстоятельство приводит к существенному снижению коэффициента использования батарей по мощности. 
Ставится задача автоматического поддержания положения рабочей точки батареи в точке с максимальной мощно-
стью, отдаваемой в нагрузку.  Для решения этой задачи предложен беспоисковый способ определения текущего по-
ложения экстремума, который использует рабочие движения системы управления батареей, обусловленные широтно-
импульсной модуляцией её тока. Применена параллельная схема управления током преобразователя, что даёт воз-
можность в режиме с постоянной плотностью светового потока при переменной нагрузке поддерживать постоянной 
не только отбираемую от батареи мощность, но и напряжение на её выходе. В режиме с переменной плотностью све-
тового потока предложенная система переходит в режим динамического слежения за точкой экстремума мощности. 
Для обеспечения устойчивых переключений в малых окрестностях экстремума введена нелинейная статическая ха-
рактеристика регулятора, формируемая системой нечётких решающих правил. Приведены результаты модельных экс-
периментов, подтверждающих работоспособность предложенного способа экстремального управления 
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Введение 

1 
В настоящее время в перечне используе-

мых альтернативных видов энергии, возобнов-
ляемых или поступающих на Землю естествен-
ным путём, доминирующую роль занимает 
солнечная энергия [1, 2]. Этому способствует 
не только доступность солнечной энергии на 
большей части земного шара, но и быстрое 
снижение стоимости оборудования, необходи-
мого для преобразования энергии света в элек-
трическую энергию [3].  

Наиболее важным функциональным эле-
ментом такого оборудования являются полу-
проводниковые фотоэлектрические преобразо-
ватели, конструктивно объединяемые в солнеч-
ные батареи [4]. Энергетическую эффектив-
ность солнечных батарей характеризуют два 
показателя: 

1) коэффициент полезного действия – доля 
солнечной энергии, преобразуемая батареей в 
электрическую энергию. Этот показатель для ба-
тарей массового применения не превышает 30 %, 
и для его повышения ведётся поиск новых полу-
проводниковых материалов и их сочетаний [5]; 

2) коэффициент использования электриче-
ской мощности солнечной батареи, определяе-
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мый как отношение фактически отбираемой от 
батареи электрической мощности к максималь-
ному значению мощности батареи, которую она 
способна отдать потребителям при данных усло-
виях освещения и температуре. На рис. 1 показа-
ны кривые изменения мощности P солнечной 
батареи при изменении отдаваемого ею тока I и 
различной плотности J светового потока. 

 

 
 

Рис. 1. Зависимость напряжения U и мощности  P  
солнечной батареи от тока I нагрузки  

и плотности J светового потока 
 
Из рис. 1 следует, что зависимость мощно-

сти  от нагрузки носит экстремальный харак-
тер, и положение экстремума отбираемой мощ-
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ности существенно изменятся при изменении 
плотности светового потока. Это изменение 
при постоянном значении отдаваемого тока 
(например, I1

* = const на рис. 1) приводит к то-
му, что батарея будет многократно недоисполь-
зована по мощности P1 << P3

*. Если батарея 
функционирует в режиме работы с постоянным 
сопротивлением нагрузки (Rн = const, рис. 1), 
коэффициент использования снижается в 
меньшей степени, но по-прежнему остаётся за-
метно меньшим единицы, в частности: P3 < P3

* . 
Таким образом, при практической экс-

плуатации солнечных батарей возникает акту-
альная задача автоматического поддержания 
(стабилизации) их состояния в точке с макси-
мальной отдаваемой мощностью. 

Наиболее распространенный способ реше-
ния этой задачи содержит следующие процеду-
ры [6, 7, 8, 9]:   

введение в процесс работы системы стаби-
лизации специального поискового возмущаю-
щего воздействия;  

наблюдение реакции системы на это воз-
действие; 

последующая оценка расположения рабо-
чей точки батареи относительно экстремума; 

выработка управления, перемещающего 
текущую рабочую точку в сторону экстремума.  

Принципиальным недостатком этого спо-
соба является необходимость выявления реак-
ции системы на специальное возмущающее 
воздействие на фоне аналогичных реакций сис-
темы на непрерывно изменяющиеся текущие 

условия её функционирования – плотность све-
тового потока и сопротивление нагрузки [10, 
11]. Кроме того, известные алгоритмы экстре-
мального управления при неизменяющемся 
световом потоке отдают в нагрузку также не-
изменяющийся оптимальный ток I* (рис. 1), 
хотя потребность потребителей в этом токе не 
является постоянной.  

Целью предлагаемой работы является: 
построение беспоискового алгоритма ав-

томатического поддержания состояния солнеч-
ной батареи в точке с максимальной отдавае-
мой мощностью, использующего собственные 
рабочие движения системы и обеспечивающего 
при этом отслеживание требуемого тока на-
грузки в режиме с постоянной плотностью све-
тового потока; 

апробация регулятора системы управле-
ния, построенного на основе набора нечётких 
решающих правил; 

исследование работоспособности полу-
ченной системы экстремального управления в 
условиях изменяющихся сопротивления на-
грузки и плотности светового потока. 
 
Алгоритм беспоискового экстремального 

 управления 
 
Для достижения заявленных целей работы 

откажемся от традиционной последовательной 
схемы управления током батареи и воспользу-
емся параллельным включением управляющего 
ключевого элемента в соответствии с рис. 2.  

 

 
 

Рис. 2. Функциональная схема системы экстремального управления   
 

Основная группа потребителей обозначена 
на рис. 2 переменным резистором Rн, ток через 
который в режиме постоянного напряжения U 
на батарее также будет изменяться. Поскольку 
средний ток I солнечной батареи определяется 
суммой: 

 

 пн III   , (1) 
 

то, управляя ключом с помощью широтно-
импульсного модулятора (ШИМ), можно изме-
нять  средний ток Iп, протекающий через па-
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раллельную часть нагрузки, обозначенную по-
стоянным  резистором Rп, изменение тока через 
которую не является критичным (например, 
нагревательные элементы). 

На рис. 2 обозначены также датчики на-
пряжения U  и тока I на выходе солнечной ба-
тареи. На основании текущих значений этих 
величин необходимо вычислить оценку G  рас-
положения рабочей точки батареи относитель-
но текущего экстремума мощности. 

Способ вычисления этой оценки показан 
на рис. 3. 

 

 
 

Рис. 3. Способ определении расположения текущей  
рабочей точки батареи относительно точки  
с максимальной отдаваемой мощностью 

 
Синхронное измерение тока I и напряже-

ния U через заданные интервалы времени по-
зволяет вычислять приращения этих величин 
I, U, приращение мощности P: 

 
 UIP  , (2) 
 
и, далее, оценку G: 
 
 UPG  ,  (3) 
 
знак которой указывает на расположение теку-
щей рабочей точки относительно экстремума, а 
амплитуда – на близость к нему. 

Действительно, если по рис. 3 рабочая 
точка расположена левее экстремума, то G > 0, 
если правее, то G < 0. В окрестностях экстре-
мума G  0. В работе [11] отмечалось, что по-
лученная оценка выполняет роль градиента 
функции мощности  относительно тока: 
 )(~ IPG  , (4) 
но в отличие от  [11], в данном случае исполь-
зуется не только знак оценки G, но и её ампли-
туда, дающая возможность реализовать непре-
рывное управление движением к экстремуму в 

силу того, что по мере приближения к послед-
нему амплитуда оценки G стремится к нулю, и 
процесс движении автоматически завершается 
в окрестностях экстремума.  

Вышесказанное подтверждает рис. 4, на 
котором показан процесс изменения оценки G 
при прохождении рабочей точки через экстре-
мум (G – мгновенные значения, G  – средние 
значения за  10 периодов квантования). 

 

 
Рис. 4. Процесс изменения оценки G  

при прохождении рабочей точки через экстремум  
 
Важно отметить, что процесс получения 

информации о приращениях тока и напряжения 
совмещён с процессом регулирования с помо-
щью ШИМ, работа которого приводит к неиз-
бежным пульсациям (приращениям) всех элек-
трических величин в системе. То есть процесс 
движения к экстремуму мощности имеет бес-
поисковый характер и не требует введения 
пробных возмущений. 

 
Нечёткий регулятор системы управления 

 
Использование оценки G для непосредст-

венного управления широтно-импульсным мо-
дулятором может привести к колебательному 
характеру процесса движения к экстремуму 
вплоть до потери устойчивости системы.  По 
этой причине в контур системы следует вво-
дить дополнительный регулятор, обеспечи-
вающий требуемое качество управления.  

В рассматриваемом случае для устранения 
колебательности переходных процессов ис-
пользуется нелинейная характеристика  регуля-
тора, сформированная в виде поверхности в 
координатах оценки G и её градиента во време-
ни G с помощью системы нечётких решаю-
щих правил, хорошо приспособленных для 
синтеза нелинейных законов управления. 
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Входными лингвистическими переменны-

ми системы являются оценка G
~

 c нечёткими 
значениями: 

 

  54321 ,,,,
~ G ,  (5) 

 

где 1 –  нечёткая переменная «намного мень-
ше нуля», 2 –  «немного меньше нуля», 3 –  
«около нуля», 4 –  «немного больше нуля»,              
5 –  «намного больше нуля»; и градиент: 
 

  54321 ,,,,
~ G ,  (6) 

 

с аналогичными нечёткими переменными. 
Выходная лингвистическая переменная u 

также формируется в виде лингвистической 
переменой u~ : 

 

  54321 ,,,,~ u ,  (7) 
 

нечёткие значения которой имеют смысл: γ1 –  
нечёткая переменная «намного уменьшить»,           
γ2 –  «немного уменьшить», γ3 –  «не изменять»,       
γ4 –  «немного увеличить», γ5 –  «намного уве-
личить». 

Функции принадлежности μ  переменных 
i (i = 1,…,5) показаны на рис. 5. Функции при-
надлежности для переменных  βi и γi

 имеют 
аналогичный вид. 

 

 
Рис. 5. Функции принадлежности μ 

нечётких переменных i, i = 1…5 
 

Система решающих правил представлена в 
табл. 1. 

Таблица 1 
Решающие правила для переменной u~  

G
~

 
G
~  

1  2  3  4  5  

1  1  1  1  2  3  

2  1  1  2  3  4  

3  1  2  3  4  5  

4  2  3  4  5  5  

5  3  4  5  5  5  

 
Нелинейность сформированной поверхно-

сти управления иллюстрируется рис. 6. 

 
 

Рис. 6. Нелинейная поверхность управляющего  
воздействия u 

 
Исследование системы 

экстремального управления 
 
Для исследования показателей качества 

синтезированной системы использовалась схе-
ма, представленная на рис. 2, в которой выбра-
ны: солнечная батарея с  ватт-амперной харак-
теристикой, показанными на рис. 1;                     
Rн = 3…40 Ом; Rп = 2 Ом; плотность светового 
потока J = 100…1000 Вт/м2; напряжение холо-
стого хода при максимальной плотности свето-
вого потока Uхх = 21,6 В; ток короткого замы-
кания при максимальной плотности светового 
потока Iкз = 7,34 А. 

Проводились следующие модельные экс-
перименты: 

проверка удержания экстремума мощности 
при скачкообразном изменении сопротивления 
нагрузки и постоянной плотности светового 
потока; 

проверка отслеживания системой точки 
максимальной мощности при изменении плот-
ности светового потока и постоянном сопро-
тивлении нагрузки. 

Результаты экспериментов приведены на 
рис. 7. 
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На рис. 7, а сопротивление нагрузки скач-
ком увеличивалось от значения 2,6 Ом до зна-
чения 8 Ом, на рис. 7, б — уменьшалось от зна-
чения 2,6 Ом до значения 1,4 Ом при постоян-
ной плотности светового потока J = 1000 Вт/м2. 
При этом ток нагрузки изменялся от 6,85 А до, 
соответственно, 2,6 А и 7,4 А.  

Как следует из рис. 7, система управления 
в обоих случаях постепенно возвращает со-
стояние солнечной батареи в рабочую точку с 
током батареи 6,85 А, т.е. в точку с максималь-
ной отдаваемой мощностью. 

 

 
 

Рис. 7. Процессы приведения состояния батареи в точку максимальной мощности при изменении нагрузки: 
а) при уменьшении тока нагрузки; б) при увеличении тока нагрузки 

 
Время возращения в точку экстремума для 

указанных параметров эксперимента составило 
не более 0,4 с, что вполне приемлемо для ре-
альных условий эксплуатации солнечных бата-
рей. Существенно, что в окрестностях точки 
экстремума в системе происходят непрерывные 
рабочие колебания, вызванные работой широт-
но-импульсного модулятора. Следует также 
отметить, что стабилизация  точки  максималь-
ной мощности в режиме с постоянной плотно-
стью светового потока означает одновремен-
ную стабилизацию значения напряжения на 
нагрузке, в то время как сопротивление Rн и ток 
Iн нагрузки изменяются. 

Результаты работы системы в режиме с 
переменной плотностью светового потока по-
казаны на рис. 8. 

Рис. 8, а иллюстрирует изменение плотно-
сти светового потока от значения 100 Вт/м2 до 
значения 300 Вт/м2 за время 0,4 с. В соответст-
вии с этим изменением ток, отдаваемый сол-
нечной батареей, также увеличивается, причём 
рабочая точка батареи постоянно поддержива-
ется в окрестностях смещающегося экстремума 
её мощности, рис. 8, б. 

 

 
 

Рис. 8. Процесс динамического отслеживания системой  
точки экстремума при изменении плотности светового 

 потока 
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управления состоянием фотоэлектрического 
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рактеристики без использования специальных 
возмущающих воздействий, вводимых в систе-
му для этой цели. Роль этих воздействий вы-
полняют рабочие движения в системе, вызван-
ные широтно-импульсным регулированием  
тока, отбираемого от преобразователя. 

2. Используемая в системе схема парал-
лельного управления током даёт возможность в 
режиме с постоянной плотностью светового 
потока одновременно со стабилизацией точки 
максимальной мощности поддерживать посто-
янным напряжение на выходе преобразователя 
при переменном сопротивлении в цепи потре-
бителей. 

3. В режиме с переменной плотностью 
светового потока система обеспечивает слеже-
ние за смещением точки экстремума в реаль-
ном масштабе времени. 

 4. Применение в системе управления ре-
гулятора с нечёткими решающими правилами 
позволяет реализовать нелинейную поверх-
ность  его статической характеристики, обеспе-
чивающую непрерывные колебания системы в 
окрестностях точки экстремума.  
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SEARCHLESS SYSTEM OF EXTREME CONTROL OF PHOTOVOLTAIC CONVERTERS  
 

U.A. Shcheglova, E.M. Vasil’ev 
 

Voronezh State Technical University, Voronezh, Russia 
 

Abstract: the problem of increasing the energy efficiency of photovoltaic converters (solar batteries) operating under 
conditions of non-stationary luminous flux density and variable load is solved. The essence of this problem lies in the extreme 
nature of the watt-ampere characteristics of the converters, the position of the maximum output power in which changes in ac-
cordance with the specified operating conditions. This circumstance leads to a significant decrease in the battery utilization fac-
tor by power. The task is set to automatically maintain the position of the battery operating point at the point with the maxi-
mum power output to the load. To solve this problem, a search-free method for determining the current extremum position is 
proposed, which uses the working movements of the battery control system caused by the pulse-width modulation of its cur-
rent. A parallel current control circuit of the converter is used, which makes it possible to maintain not only the power taken 
from the battery constant in the mode with a constant luminous flux density under a variable load, but also a constant voltage at 



Вестник Воронежского государственного технического университета. Т. 21. № 4. 2025 
 

17 

its output. In the mode with a variable luminous flux density, the proposed system switches to the mode of dynamic tracking of 
the power extremum point. To ensure stable switching in small extremum neighborhoods, a nonlinear static characteristic of 
the controller is introduced, formed by a system of fuzzy decision rules. The results of model experiments are presented, con-
firming the operability of the proposed method of extremal control 

 
Key words: renewable energy sources, photovoltaic converters, maximum power point, extreme control 
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