Hypoxia and novel coronavirus infection: Hypoxia-inducible factor 1-alpha as marker of disease severity and new therapeutic target
- 作者: Efimov S.V.1,2, Lyubimov A.V.1,3, Cherkashin D.V.1, Tarachteev A.S.1, Bykova D.D.1, Vasiliev V.V.4, Trandina A.E.1, Pogozhaya E.A.5
-
隶属关系:
- Kirov Military Medical Academy
- Saint Petersburg Medical and Social Institute
- Institute of Experimental Medicine
- 1st Branch of the 425 Military Hospital
- Medical Center for Premorbid and Emergency Conditions of the Mandryka Central Military Clinical Hospital
- 期: 卷 27, 编号 3 (2025)
- 页面: 367-374
- 栏目: Original Study Article
- URL: https://bakhtiniada.ru/1682-7392/article/view/319568
- DOI: https://doi.org/10.17816/brmma643305
- EDN: https://elibrary.ru/LQMOQV
- ID: 319568
如何引用文章
详细
BACKGROUND: Hypoxia has been identified as a crucial factor in the pathogenesis of the novel coronavirus infection, with studies demonstrating its role in inflammatory processes and complications. Hypoxia-inducible factor 1-alpha plays a critical role in regulating the body’s adaptation to oxygen deficiency. A comprehensive investigation of variations in hypoxia-inducible factor 1-alpha in patients with new coronavirus infection allows for elucidating the pathogenetic mechanisms of the disease and identifying promising therapeutic targets.
AIM: The work aimed to evaluate the role of hypoxia-inducible factor 1-alpha in the compensation and adaptation of the body to hypoxic stress during novel coronavirus infection.
METHODS: From January 2020 to March 2022, 295 patients were assessed at the Naval Therapy Clinic of the Kirov Military Medical Academy, with 272 of them diagnosed with the novel coronavirus infection. The patients were divided into three age groups based on the World Health Organization’s classification: group 1, young age (207 patients); group 2, middle age, (56 patients); and group 3, elderly age (32 patients). Serum hypoxia-inducible factor 1-alpha was measured using an enzyme immunoassay. Statistical data were processed using GraphPad Prism 8 and IBM SPSS Statistics. Statistical significance was set at p < 0.05.
RESULTS: Hypoxia-inducible factor 1-alpha correlated with both age and novel coronavirus infection severity, peaking among elderly patients with severe forms of the disease. Hypoxia-inducible factor 1-alpha decreased during recovery, indicating the adaptive response to hypoxic stress termination. In the group of elderly patients, higher hypoxia-inducible factor 1-alpha values were associated with mild novel coronavirus infection, which was related to existing comorbidities.
CONCLUSION: The findings corroborate the hypothesis that hypoxia-inducible factor 1-alpha is a valuable prognostic marker for hypoxic complication severity in patients with the novel coronavirus infection and confirm its potential as a therapeutic target. Further studies are needed to elucidate the molecular mechanisms of its regulation and develop pharmacological treatment strategies for hypoxic disorders.
作者简介
Semyon Efimov
Kirov Military Medical Academy; Saint Petersburg Medical and Social Institute
编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-0384-3359
SPIN 代码: 6351-6832
MD, Cand. Sci. (Medicine)
俄罗斯联邦, 6Zh Akademika Lebedeva st., Saint Petersburg, 194044; Saint PetersburgAndrey Lyubimov
Kirov Military Medical Academy; Institute of Experimental Medicine
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-9829-4681
SPIN 代码: 5307-4186
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg; Saint PetersburgDmitry Cherkashin
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1363-6860
SPIN 代码: 2781-9507
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgAnton Tarachteev
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0006-4294-1839
SPIN 代码: 9657-2590
cadet
俄罗斯联邦, Saint PerersburgDiana Bykova
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-7450-6411
SPIN 代码: 4909-7667
cadet
俄罗斯联邦, Saint PerersburgVladislav Vasiliev
1st Branch of the 425 Military Hospital
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0003-9489-979X
SPIN 代码: 3525-5337
department resident
俄罗斯联邦, IrkutskAleksandra Trandina
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1875-1059
SPIN 代码: 6089-3495
doctor of laboratory diagnostics
俄罗斯联邦, Saint PetersburgElena Pogozhaya
Medical Center for Premorbid and Emergency Conditions of the Mandryka Central Military Clinical Hospital
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-5996-166X
SPIN 代码: 7542-5026
doctor of the medical department
俄罗斯联邦, Moscow参考
- Serebrovska ZO, Chong EY, Serebrovska TV, et al. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica. 2020;41(12):1539–1546. doi: 10.1038/s41401-020-00554-8 EDN: ZOWZPC
- Sabirov I, Mamedova K, Sultanova M, et al. The role and significance of the hypoxic component in the development of complications of COVID-19. Scientific Heritage. 2021;(62-2):21–28. doi: 10.24412/9215-0365-2021-62-2-21-28 EDN: QWHHBA
- Rahman A, Tabassum T, Araf Y, et al. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Mol Biol Rep. 2021;48(4):3863–3869. doi: 10.1007/s11033-021-06358-1 EDN: FIIYPN
- Lyubimov AV, Cherkashin DV, Efimov SV, et al. Mechanisms and triggers of adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3):269–280. doi: 10.17816/RCF193269-280 EDN: NDYWMH
- Mitroshina EV, Savyuk MO, Ponimaskin E, et al. Hypoxia-inducible factor (HIF) in ischemic stroke and neurodegenerative disease. Front Cell Dev Biol. 2021;9:703084. doi: 10.3389/fcell.2021.703084 EDN: CBZODC
- Kalinin RE, Suchkov IA, Raitsev SN, et al. Role of hypoxia-inducible factor 1α in adaptation to hypoxia in pathogenesis of novel coronavirus disease 2019. I.P. Pavlov Russian Medical Biological Herald. 2024;32(1):133–144. doi: 10.17816/PAVLOVJ16553 EDN: PFOGIO
- Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond). 2020;17:33. doi: 10.1186/s12950-020-00263-3 EDN: GIPMEH
- Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36(7):e3319. doi: 10.1002/dmrr.3319 EDN: ZJITDV
- Jordan RE, Adab P, Cheng KK. COVID-19: risk factors for severe disease and death. BMJ. 2020;368:m1198. doi: 10.1136/bmj.m1198
- Andreenko AA, Andreychuk YuV, Arsentiev VG, et al. Epidemiology of the new coronavirus infection (COVID-19). In: Infection Caused by SARS-COV-2. Saint Petersburg: Kirov Military Medical Academy; 2023. P. 17–22. EDN: QFKFPF (In Russ.)
- Vassilaki N, Frakolaki E. Virus-host interactions under hypoxia. Microbes Infect. 2017;19(3):193–203. doi: 10.1016/j.micinf.2016.10.004 EDN: YWACOH
- Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228–248. doi: 10.1002/path.5471 EDN: QHGXPH
- Zhang R, Wu Y, Zhao M, et al. Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L631–L640. doi: 10.1152/ajplung.90415.2008
- Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020;32(3):437–446. doi: 10.1016/j.cmet.2020.07.007
- May L, Chu CF, Zielinski CE. Single-cell RNA sequencing reveals HIF1A as a severity-sensitive immunological scar in circulating monocytes of convalescent comorbidity-free COVID-19 patients. Cells. 2024;13(4):300. doi: 10.3390/cells13040300 EDN: HZQZXS
- Lazzeri M, Lanza A, Bellini R, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a position paper of the Italian association of respiratory physiotherapists (ARIR). Monaldi Arch Chest Dis. 2020;90(1). doi: 10.4081/monaldi.2020.1285 EDN: IHWHJH
- He J, Wu B, Chen Y, et al. Characteristic electrocardiographic manifestations in patients with COVID-19. Can J Cardiol. 2020;36(6):966.e1–966.e4. doi: 10.1016/j.cjca.2020.03.028 EDN: WEYHIF
- Bickler PE, Feiner JR, Lipnick MS, et al. ”Silent” presentation of hypoxemia and cardiorespiratory compensation in COVID-19. Anesthesiology. 2021;134(2):262–269. doi: 10.1097/ALN.0000000000003578
- Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med. 2021;176:106239. doi: 10.1016/j.rmed.2020.106239 EDN: GZVJPH
- Yeo EJ. Hypoxia and aging. Exp Mol Med. 2019;51(6):1–15. doi: 10.1038/s12276-019-0233-3 EDN: ELMSKX
- Lahiri S, Antosiewicz J, Pokorski M. A common oxygen sensor regulates the sensory discharge and glomus cell HIF-1alpha in the rat carotid body. J Physiol Pharmacol. 2007;58(5):327–333.
- Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–578. doi: 10.1146/annurev.cellbio.15.1.551
- Chen J, Huang X, Tao C, et al. Berberine chloride suppresses non-small cell lung cancer by deregulating Sin3A/TOP2B pathway in vitro and in vivo. Cancer Chemother Pharmacol. 2020;86(1):151–161. doi: 10.1007/s00280-020-04050-y EDN: JMYAUA
- Gao H, Nepovimova E, Heger Z, et al. Role of hypoxia in cellular senescence. Pharmacol Res. 2023;194:106841. doi: 10.1016/j.phrs.2023.106841 EDN: QZEQGF
