INTEGRATED ANALYSIS BY GEOPHYSICAL AND SPATIAL DATA TO IDENTIFY THE FORMATION OF KEPUHLEGUNDI HOT SPRING ON BAWEAN ISLAND

Обложка

Цитировать

Полный текст

Аннотация

Bawean Island is a result of volcanic activity in the back-arc volcanism zone located on the north side of Java Island. Bawean Island was formed due to the geological structure being controlled by the Paleogene-Neogene tectonic line in the Meratus Pattern. The mantle tearing resulted in the formation of the Bawean Arc. The Kepuhlegundi Hot Spring is a component of the volcanism product on Bawean Island. To analyze the formation of hot springs in more detail, we conducted magnetic method measurements and integrated the data with gravity satellite and Fault Fracture Density (FFD) methods. The three methods were used to determine the continuity of the mapped geological structures surrounding the hot springs. The FFD method can be used to map the weak zone of the hot spring, which is caused by the lineament surrounding it. The magnetic and gravity methods reveal anomalous contrasts that extend towards the hot springs in the direction of the structure. The magnetic and gravity methods reveal anomalous contrasts that extend towards the hot springs in the direction of the structure. Based on regional anomaly analysis, spectrum analysis indicates that the structure is located at a shallow depth of 15 to 80 meters. The drawing in each method shows a dominant orientation in the Northeast-Southwest direction, which corresponds to the orientation of the Meratus Structure Pattern. Kepuhlegundi Hot Spring is formed due to the control of geological structures, allowing hot fluids to flow through fractures as an aquifer.

Об авторах

M. E. D. Rafi

Email: mharismf@geofisika.its.ac.id
ORCID iD: 0009-0003-6716-0084
Scopus Author ID: 58812370500 ; 58088054600

Geophysical Engineering

M. H. M. Fajar

Email: mharismf@geofisika.its.ac.id
ORCID iD: 0009-0001-8043-9261
Scopus Author ID: 57219175688

F. Ulumuddin

Email: mharismf@geofisika.its.ac.id
ORCID iD: 0009-0005-8687-6402

Geophysical Engineering

M. S. Purwanto

Автор, ответственный за переписку.
Email: mharismf@geofisika.its.ac.id
ORCID iD: 0000-0002-6156-5481
Scopus Author ID: 56968035800

Geophysical Engineering

Список литературы

  1. Alvarez, R., and V. Yutsis (2015), Southward Migration of Magmatic Activity in the Colima Volcanic Complex, Mexico: An Ongoing Process, International Journal of Geosciences, 06(09), 1077–1099, https://doi.org/10.4236/ijg.2015.69085.
  2. Amir, H., S. Bijaksana, D. Dahrin, et al. (2021), Subsurface structure of Sumani segment in the Great Sumatran Fault inferred from magnetic and gravity modeling, Tectonophysics, 821, 229,149, https://doi.org/10.1016/j.tecto.2021.229 149.
  3. Arafa, S. A. S., M. El-bohoty, M. Abou Heleika, et al. (2018), Implementation of magnetic and gravity methods to delineate the subsurface structural features of the basement complex in central Sinai area, Egypt, NRIAG Journal of Astronomy and Geophysics, 7(1), 162–174, https://doi.org/10.1016/j.nrjag.2017.12.002.
  4. Arellano, C. J. J., L. T. Armada, C. B. Dimalanta, K. L. Queaño, E. S. Andal, and G. P. Yumul (2021), Interpretation of ground magnetic data in Suyoc, Mankayan Mineral District, Philippines, Resource Geology, 71(4), 363–376, https://doi.org/10.1111/rge.12270.
  5. Arifn, L., and W. Lugra (2016), Zona Sesar di Perairan Kalimantan Selatan, Jurnal Geologi Kelautan, 7(1), https://doi.org/ 10.32693/jgk.7.1.2009.166.
  6. Arrof, D., I. S. Abu-Mahfouz, and S. D. Prayudi (2022), Investigating high permeable zones in non-volcanic geothermal systems using lineament analysis and fault fracture density (FFD): northern Konawe Regency, Indonesia, Geothermal Energy, 10(1), https://doi.org/10.1186/s40517-022-00241-3.
  7. Aziz, S., S. Hardjoprawiro, and A. Mangga (1993), Geological Map of the Bawean Island and Masalembo Quadrangle, Jawa.
  8. Badan Informasi Geospasial (2018), Seamless digital elevation model (DEM) dan Batimetri Nasional, https://tanahair. indonesia.go.id/demnas/, (visited on 2024).
  9. Baranov, V. (1957), A New Method for Interpretation of Aeromagnetic Maps: Pseudo-Gravimetric Anomalies, Geophysics, 22(2), 359–382, https://doi.org/10.1190/1.1438369.
  10. Basantaray, A. K., and A. Mandal (2022), Interpretation of gravity-magnetic anomalies to delineate subsurface confg- uration beneath east geothermal province along the Mahanadi rift basin: a case study of non-volcanic hot springs, Geothermal Energy, 10(1), https://doi.org/10.1186/s40517-022-00216-4.
  11. Bense, V. F., T. Gleeson, S. E. Loveless, O. Bour, and J. Scibek (2013), Fault zone hydrogeology, Earth-Science Reviews, 127, 171–192, https://doi.org/10.1016/j.earscirev.2013.09.008.
  12. Blenkinsop, T. G. (2008), Relationships between faults, extension fractures and veins, and stress, Journal of Structural Geology, 30(5), 622–632, https://doi.org/10.1016/j.jsg.2008.01.008.
  13. Choi, J.-H., P. Edwards, K. Ko, and Y.-S. Kim (2016), Defnition and classifcation of fault damage zones: A review and a new methodological approach, Earth-Science Reviews, 152, 70–87, https://doi.org/10.1016/j.earscirev.2015.11.006.
  14. Chouhan, A. K., S. Chopra, H. Chaube, D. Singh, and A. K. Mishra (2022), Integrated analysis of the gravity and the magnetic data to infer structural features and their role in prospective mineralisation in and around the Ambaji-Deri- Danta-Chitrasani region, NW India, Journal of Earth System Science, 131(4), https://doi.org/10.1007/s12040-022-019 79-x.
  15. Danakusumah, G., and Suryantini (2020), Integration of the Lineament Study in the Karaha-Bodas Geothermal Field, West Java, IOP Conference Series: Earth and Environmental Science, 417(1), 012,008, https://doi.org/10.1088/1755-131 5/417/1/012008.
  16. Fajar, M. H. M., D. D. Warnana, A. Widodo, S. E. Prabawa, and A. Iswahyudi (2021), Aquifer System Analysis to Identify the Cause of Groundwater Depletion at Umbulan Spring, Indonesia, Chemical Engineering Transactions, 89, 385–390, https://doi.org/10.3303/CET2189065.
  17. Haeruddin, A. Saepuloh, M. N. Heriawan, and T. Kubo (2016), Identifcation of linear features at geothermal feld based on Segment Tracing Algorithm (STA) of the ALOS PALSAR data, IOP Conference Series: Earth and Environmental Science, 42, 012,003, https://doi.org/10.1088/1755-1315/42/1/012003.
  18. Hafzh, M. (2022), Vulkanostratigraf Dan Petrogenesis Pulau Bawean: Studi Khusus Pada Daerah Danau Kastoba Dan Sekitarnya, Pulau Bawean, Kabupaten Gresik, Jawa Timur, Perpustakaan Digital – Digilib ITB.
  19. Hamilton, W. (1974), Earthquake Map Of The Indonesian Region, US Geological Survey, https://doi.org/10.3133/i875c.
  20. Hendratno, A., and F. D. Khoir (2019), Petrologi Batuan Vulkanik Pulau Bawean, Kabupaten Gresik, Jawa Timur, in Seminar Nasional Kebumian KE-12 Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada.
  21. Hinze, W. J., R. Ralph, R. von Frese, H. Aff, and A. H. Saad (2013), Gravity and Magnetic Exploration: Principles, Practices, and Applications, Cambridge Universiry Press.
  22. Hirt, Ch., S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer (2013), New ultrahigh-resolution picture of Earth’s gravity feld, Geophysical Research Letters, 40(16), 4279–4283, https://doi.org/10.1002/grl.50838.
  23. Hosono, T., and C. Yamanaka (2021), Origins and pathways of deeply derived carbon and fuids observed in hot spring waters from non-active volcanic felds, western Kumamoto, Japan, Earth, Planets and Space, 73(1), https://doi.org/10.1186/s40623-021-01478-1.
  24. Hutubessy, S. (2003), Struktur Sesar Bawah Permukaan dan Implikasinya Terhadap Pemunculan Kelompok Gunungapi di Semenanjung Muria, Jawa Tengah, Berdasarkan Pendekatan Analisis Gaya Berat, Jurnal Geologi dan Sumberdaya Mineral, 9(133), 37–54.
  25. Keegan-Treloar, R., D. J. Irvine, S. C. Solórzano-Rivas, A. D. Werner, E. W. Banks, and M. J. Currell (2022), Fault-controlled springs: A review, Earth-Science Reviews, 230, 104,058, https://doi.org/10.1016/j.earscirev.2022.104058.
  26. Luo, L., H. Wen, and E. Capezzuoli (2021), Travertine deposition and diagenesis in Ca-defciency perched hot spring systems: A case from Shihuadong, Tengchong, China, Sedimentary Geology, 414, 105,827, https://doi.org/10.1016/j. sedgeo.2020.105827.
  27. Manyoe, I. N., and R. Hutagalung (2022), The extraction and analysis of lineament density from digital elevation model (dem) in libungo geothermal area, gorontalo, IOP Conference Series: Earth and Environmental Science, 1089(1), 012,012, https://doi.org/10.1088/1755-1315/1089/1/012012.
  28. Nabhan, M. H., M. H. M. Fajar, and W. Lestari (2024), Analysis of Geological Structure based on 3D Virtual Outcrop Model and Physical Properties of Rocks in Wringinanom District, Gresik Regency, IOP Conference Series: Earth and Environmental Science, 1307(1), 012,024, https://doi.org/10.1088/1755-1315/1307/1/012024.
  29. Nahli, K., F. Mulyana, G. E. Tsani, M. A. Alwan, M. H. Darojat, and R. N. Hendrawan (2016), Identifying Non-Volcanic Geothermal Potential in Amohola, Southeast Sulawesi Province, by Applying the Fault and Fracture Density (FFD) Method, IOP Conference Series: Earth and Environmental Science, 42, 012,015, https://doi.org/10.1088/1755-1315/42/1/012015.
  30. Nayoan, A. G. P., K. A. Pranatikta, Anil, F. Hendrasto, and S. Yuniasih (2023), Upfow-outfow Zone Identifcation Based on Geochemistry Indicator and Fault Fracture Density Correlation Analysis in Mt. Gede Geothermal Case, West Java, IOP Conference Series: Earth and Environmental Science, 1159(1), 012,003, https://doi.org/10.1088/1755-1315/1159/1/012003.
  31. Pohan, A. F., S. Sismanto, B. E. Nurcahya, et al. (2023), Utilization and modeling of satellite gravity data for geohazard assessment in the Yogyakarta area of Java Island, Indonesia, Kuwait Journal of Science, 50(4), 499–511, https://doi.org/ 10.1016/j.kjs.2023.05.016.
  32. Pulonggono, A. D., and S. Martodjojo (1994), Perubahan tektonik Paleogen-Neogen merupakan peristiwa tektonik terpenting di Jawa, in Geologi dan Geotek Pulau Jawa, Yogyakarta, pp. 37–39.
  33. Puswanto, E., A. Farisan, D. A. Wibowo, et al. (2022), Fault Bend Fold Related Thrust Fault Waturanda Formation as Representative of Tectonic Compression as an Asset Geological Heritage of GNKK, Indonesia, in 2022 IEEE Asia-Pacifc Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), IEEE, https://doi.org/10.1109/AGERS5 6232.2022.10093295.
  34. Raf, M. E. D., M. H. M. Fajar, M. S. Purwanto, et al. (2023), Analysis of Formation Ronggojalu Spring and Probolinggo Active Fault Continuity with Satellite Data Gravity Method, Jurnal Penelitian Pendidikan IPA, 9(10), 8456–8461, https://doi.org/10.29303/jppipa.v9i10.3399.
  35. Rosli, N. A., M. N. A. Anuar, M. H. Mansor, N. S. I. Abdul Rahim, and M. H. Arifn (2022), What Makes A Hot Spring, Hot?, Warta Geologi, 48(1), 30–35, https://doi.org/10.7186/wg481202204.
  36. Setijadji, L. D., S. Kajino, A. Imai, and K. Watanabe (2006), Cenozoic Island Arc Magmatism in Java Island (Sunda Arc, Indonesia): Clues on Relationships between Geodynamics of Volcanic Centers and Ore Mineralization, Resource Geology, 56(3), 267–292, https://doi.org/10.1111/j.1751-3928.2006.tb00284.x.
  37. Shiraishi, F., A. Morikawa, K. Kuroshima, et al. (2020), Genesis and diagenesis of travertine, Futamata hot spring, Japan, Sedimentary Geology, 405, 105,706, https://doi.org/10.1016/j.sedgeo.2020.105706.
  38. Sidarto, N. S., and P. Sanyoto (1999), Sistem sesar Pengontrol Pemunculan Kelompok Gunungapi Muria Hasil Penafsiran Citra Landsat, Jurnal Geologi dan Sumberdaya Mineral, IX(99).
  39. Siringoringo, L. P., B. Sapiie, A. Rudyawan, and I. G. B. E. Sucipta (2024), Origin of high heat fow in the back-arc basins of Sumatra: An opportunity for geothermal energy development, Energy Geoscience, 5(3), 100,289, https://doi.org/10.1016/j.engeos.2024.100289.
  40. Sismanto, S., U. Yasmita, and F. Jusmi (2018), Interpretation of the gravity and magnetic anomalies of the geothermal subsurface structure area in Pamancalan, Lebak, Banten, West Java, Indonesia, Arabian Journal of Geosciences, 11(14), https://doi.org/10.1007/s12517-018-3740-y.
  41. Soengkono, S. (1999), Te Kopia geothermal system (New Zealand) - the relationship between its structure and extent, Geothermics, 28(6), 767–784, https://doi.org/10.1016/S0375-6505(99)00042-5.
  42. Suprijadi, B. (1992), Peranan Wrench Fault PadaAkumulasi Hidrokarbon di Pulau Madura, in Proc. of the 21th Annual Scientifc Meeting of the Indonesian Association of Geologist.
  43. Usman, E. (2012), Tektonik Dan Jalur Vulkanik Busur Belakang Baweanmuria Sebagai Pengontrol Pembentukan Cekungan Pati Dan Potensi Hidrokarbon, Indonesian Journal of Applied Sciences, 2(3).
  44. Usman, E., A. Sudradjat, E. R. Suparka, and I. Syafri (2010), Pembentukan Jalur Vulkanik Busur Belakang Muria-Bawean Dan Pengaruhnya Terhadap Pembentukan Cekungan Pati, in PRECEEDINGS PIT IAGI LOMBOK 2010. The 29th IAGI Annual Convention and Exhibition.
  45. van Bemmelen, R. W. (1949), The Geology of Indonesia. Vol. IA: General Geology of Indonesia and Adjacent Archipelagoes, Government Printing Ofce, The Hague.
  46. Zhou, X., L. Zhuo, Y. Wu, G. Tao, J. Ma, et al. (2023), Origin of some hot springs as conceptual geothermal models, Journal of Hydrology, 624, 129,927, https://doi.org/10.1016/j.jhydrol.2023.129927.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Rafi M.E., Fajar M.H., Ulumuddin F., Purwanto M.S., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».