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The paper describes the course of the COVID-19 pandemic using a combination of mathematical
statistics and discrete mathematical analysis (DMA) methods. The method of regression derivatives and
FCARS algorithm as components of DMA will be for the first time tested outside of geophysics
problems. The algorithm is applied to time series of the number of new cases of COVID-19 infections
per day for some regions of Russia and the Republic of Austria. This allowed to assess the nature and
anomalies of pandemic spread as well as restrictive measures and decisions taken in terms of the
administration of countries and territories. It was shown that these methods can be used to identify time
intervals of change in the nature of the incidence rate and areas with the most severe course of the
epidemic. This made it possible to identify the most significant restrictive measures that allowed to
reduce the growth of the disease.
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1 Introduction

The new coronavirus pandemic COVID-19 in-
fection that began in December 2019 [Huang et al.,
2020] has become an unprecedented global chal-
lenge of the 21st century for science and human-
ity as a whole. The fight against the pandemic has
posed many serious challenges that require sys-
temic efforts to address them.

These tasks go far beyond the scope of purely
medical issues. Their solution requires system-
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atic and analytical integration of methods of vari-
ous scientific disciplines. Combining the efforts of
medical researchers with the projects of scientists
from allied sciences (biology, physiology, chem-
istry, etc.) can make a significant contribution in
the future to the study of the patterns of pan-
demic development, including the description of
the nature of its spread. A particularly important
role in such a multidisciplinary approach is played
by data analysis [Odintsova et al., 2020; Soloviev
et al., 2016] and system-analytical mathematical
constructs (methods) that allow the integration of
the achievements of various disciplines [Gvishiani,
2019].
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The article is devoted to some results of apply-
ing a set of mathematical methods to describe the
course of the COVID-19 pandemic. The set in-
cludes both well-known, generally accepted meth-
ods of mathematical statistics and innovative al-
gorithms of discrete mathematical analysis (DMA)
[Agayan et al., 2018; Dzeboev et al., 2022].

The paper analyzes data describing the spread
of coronavirus since the first confirmed cases of in-
fection in a number of subjects of the Russian Fed-
eration and the Republic of Austria. The choice
of subjects for comparison is not accidental and is
defined by the international joint project of Geo-
physical Center of the Russian Academy of Sci-
ences (GC RAS) with the International Institute for
Applied Systems Analysis (IIASA), located in Lax-
enburg, Austria.

The availability of statistical information allows
pandemic events to be presented as a time series.
The study of the properties of these time series, in
turn, makes it possible to draw conclusions about
the nature and anomalies of the pandemic spread,
the restrictive measures taken and the decisions
made in terms of administration of countries and
territories.

2 Input data

Initially, sources of information that met the ob-
jectives of the project were searched. One of the
criteria for the use of data sets was the availability
of detailed records on the subjects of the Russian
Federation and European countries in comparable
temporal and spatial scales.

The selected data can be divided into two (I and
II) groups according to the type of information to
be collected:

1. Epidemiological parameters of the course of the
pandemic: the number of infections, recover-
ies, and deaths. The data sources used for the
first group were:

(a) Yandex dataset [Yandex DataLens, 2023],
daily aggregating the above data from
the site [https://xn--80aesfpebag
mfblc0a.xn--p1ai/] in the time range
from 12.03.2020 to 13.01.2023 for all
subjects of the Russian Federation, in-
cluding federal cities: Moscow, St. Peters-
burg, and Sevastopol;

(b) Johns Hopkins University (JHU) Cen-
ter for Systems Science and Engineer-
ing COVID-19 Data Repository [GitHub,
2023], daily aggregating data in the time
range from 22.01.2020 to the current day
for the countries of the world;

2. Chronology of restrictive measures taken in Eu-
ropean countries to contain the spread of the
pandemic. The source here was a data set
of the World Health Organization (WHO)
[World Health Organization, 2019], where as
of November 1, 2022 1317 records on the
subjects of the Russian Federation (including
213 records on Moscow, 91 records on St. Pe-
tersburg, 17 records on Kaliningrad Oblast,
2 records on Sevastopol and the Crimea) and
46,174 records on European countries (in-
cluding 1145 records on Austrian Rep.) were
collected.

For further references to data sources in the text
of the article, the abbreviated names of their ag-
gregators will be used: YAND, JHU, and WHO.

The data of the preliminary results of the All-
Russian Population Census of 01.10.2021 were
used for the number of population in the sub-
jects of the Russian Federation [Rossiyskaya Gazeta,
2022]. For a comparative assessment of the dy-
namics of mortality the data of the State Automo-
bile Inspectorate [GIBDD, 2023] were used.

The work assesses the course of the pandemic
in five subjects of the Russian Federation: Moscow
(Figure 1), St. Petersburg (Figure 2), Sevastopol
(Figure 3), Crimea (Figure 4), Kaliningrad Re-
gion (Figure 5) and the Republic of Austria (Fig-
ure 6). In the figures corresponding to the regions,
graphic visualizations of the time series of the
number of new COVID-19 infections (section a),
recoveries (section b) and deaths (section c) per day
in the time range from 12.03.2020 to 01.11.2022
(965 days) are shown. Also for each of the selected
subjects of the Russian Federation, a time series of
the total number of infections per date, normalized
per 100,000 population of the subject (section d),
was calculated and visualized. It should be noted
that the calculation of a similar time series for the
Austrian Rep. was not possible, because the JHU
does not record the values of the number of new
cases of recoveries since 05.08.2021.

Total numbers of COVID-19 infections, recover-
ies, and per countries and subjects of the Russian
Federation are visualized via the system of inter-
active geospatial 3D visualizations virtual hyper-
globe “ORBUS WEB 1.0 COVID-19” [ORBUS Web,
2019]. The ease of use of digital globes and their
capacity to display spatial information make them
a powerful tool to communicate and make data
accessible to a range of users including decision-
makers, researchers, and the general public [Au-
rambout et al., 2008].
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Figure 1: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day,
and (d) the total number of infections per day, normalized per 100,000 population for Moscow from
12.03.2020 to 01.11.2022.

Figure 2: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day,
and (d) the total number of infections per day, normalized per 100,000 population for St. Petersburg
from 12.03.2020 to 01.11.2022.
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Figure 3: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day,
and (d) the total number of infections per day, normalized per 100,000 population for Sevastopol from
12.03.2020 to 01.11.2022.

Figure 4: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day,
and (d) the total number of infections per day, normalized per 100,000 population for the Republic of
Crimea from 12.03.2020 to 01.11.2022.
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Figure 5: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day,
and (d) the total number of infections per day, normalized per 100,000 population for Kaliningrad
oblast from 12.03.2020 to 01.11.2022.

Figure 6: Series of the number of new COVID-19 cases (a) infections, (b) recoveries, (c) deaths per day
Austrian Rep. from 12.03.2020 to 01.11.2022. (JHU does not record values for the number of new cases
of recoveries since 5.08.2021).
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3 Statistical analysis of the COVID-
19 pandemic course

3.1 Correlation analysis of time series

To search for patterns in the course of the
COVID-19 pandemic in the six regions in question
the cross-correlations of the time series presented
in Figure 1–6 were analyzed.

Table 1 shows the values of the correlation coef-
ficients kni,j between pairs of time series i and j (1 –
the number of new infections per day, 2 – the num-
ber of new cases of recoveries per day, 3 – the num-
ber of new deaths per day, 4 – the total number of
infected as of the date) in the region n (1 – Moscow,
2 – St. Petersburg, 3 – Sevastopol, 4 – Crimea Rep.,
5 – Kaliningrad region); index n determines the
subtable number, indexes i and j – row and col-
umn of the cell.

Note that in the studied subjects of the Russian
Federation, there is often a pronounced positive
correlation between the time series of the number
of new cases of infections and recoveries per day
(kn2,1): which indicates the transitivity of the pro-
cesses [Saxena et al., 2022]. Moreover, in general,
the smaller the population of a constituent entity
of the Russian Federation, the greater kn2,1.

Table 2 shows the values of the correlation coef-
ficients rni,j between time series n (1 – the number
of new infections per day, 2 – the number of new
cases of recoveries per day, 3 – the number of new
deaths per day, 4 – the total number of infected as
of the date), characterizing a pair of regions i and j
(1 – Moscow, 2 – St. Petersburg, 3 – Sevastopol, 4 –
Crimea Rep., 5 – Kaliningrad region, 6 – Austrian
Rep.); index n determines the subtable number, in-
dexes i and j – row and column of the cell.

Note that there is a pronounced positive correla-
tion between the time series of the number of new
infections, recoveries, and deaths per day for many
pairs of studied regions of the Russian Federation.
This illustrates the similarity in the dynamics of
the pandemic in these constituent regions of the
Russian Federation. The highest correlation oc-
curs in pairs Moscow – St. Petersburg (rn2,1) and
Sevastopol – Crimea Rep. (rn4,3). The similarity of
dynamics in the first pair is naturally explained by
the territorial and transport proximity of the cities.
In the second pair, the similarity of dynamics is de-
termined by the geographical proximity of the re-
gions on the same peninsula. The subjects of both
pairs are also characterized by high cyclic traffic of
transport links.

Table 1: Values of correlation coefficients kni,j . Index n determines the subtable number, indexes i and j
– row and column of the cell

Moscow Infections per day Recoveries per day Deaths per day Total number of infected

Infections per day 1
Recoveries per day 0.562938977 1
Deaths per day 0.488429399 0.485220584 1
Total number of infected 0.682719214 0.634364722 0.38332898 1

St. Petersburg Infections per day Recoveries per day Deaths per day Total number of infected

Infections per day 1
Recoveries per day 0.64016228 1
Deaths per day 0.406394508 0.365338097 1
Total number of infected 0.811082998 0.751588059 0.460550596 1

Sevastopol Infections per day Recoveries per day Deaths per day Total number of infected

Infections per day 1
Recoveries per day 0.738854362 1
Deaths per day 0.59671243 0.493865275 1
Total number of infected 0.921670552 0.679162114 0.647886886 1

Crimea Rep. Infections per day Recoveries per day Deaths per day Total number of infected

Infections per day 1
Recoveries per day 0.846445438 1
Deaths per day 0.488566348 0.500071265 1
Total number of infected 0.82489322 0.706265408 0.751662862 1

Kaliningrad region Infections per day Recoveries per day Deaths per day Total number of infected

Infections per day 1
Recoveries per day 0.756660355 1
Deaths per day 0.38710515 0.352082048 1
Total number of infected 0.956961024 0.788041885 0.428597162 1
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Table 2: Values of correlation coefficients rni,j . Index n determines the subtable number, indexes i and
j – row and column of the cell

Infections
per day Moscow St. Peters-

burg
Sevastopol Crimea Rep. Kaliningrad

region
Austrian
Rep.

Moscow 1
St. Petersburg 0.802667149 1
Sevastopol 0.505833063 0.746333688 1
Crimea Rep. 0.509039416 0.697500346 0.908407717 1
Kaliningrad region 0.529599673 0.838192337 0.872443674 0.822683758 1
Austrian Rep. 0.333878184 0.536365647 0.508738171 0.519882201 0.638959037 1

Recoveries
per day Moscow St. Peters-

burg
Sevastopol Crimea Rep. Kaliningrad

region
Moscow 1
St. Petersburg 0.73597217 1
Sevastopol 0.480899421 0.688414144 1
Crimea Rep. 0.542716917 0.69422487 0.770550067 1
Kaliningrad region 0.485166577 0.777123339 0.807214694 0.736531848 1

Deaths per day
Moscow St. Peters-

burg
Sevastopol Crimea Rep. Kaliningrad

region
Austrian
Rep.

Moscow 1
St. Petersburg 0.865100603 1
Sevastopol 0.625697757 0.632540937 1
Crimea Rep. 0.645069915 0.622804763 0.72713008 1
Kaliningrad region 0.37566987 0.35446118 0.451005364 0.503062554 1

Austrian Rep. 0.399861613 0.402205622 0.33021934 0.31581971 0.173683442 1

Total number
of infected Moscow St. Peters-

burg
Sevastopol Crimea Rep. Kaliningrad

region

Moscow 1
St. Petersburg 0.587355349 1
Sevastopol 0.631741532 0.664188968 1
Crimea Rep. 0.464082131 0.457751158 0.765739263 1
Kaliningrad region 0.575901095 0.831521306 0.872163148 0.634349094 1

Correlation between the time series of the num-
ber of new infections and deaths per day between
any subject of the Russian Federation and Aus-
trian Rep. (r1

6,n and r3
6,n respectively) is weakly

pronounced, which suggests that the course of the
pandemic is not similar in the compared regions.

3.2 Recognition of key restrictive measures us-
ing regression derivatives

This part focuses on the identification of restric-
tive measures from WHO records that influenced
the reduction of new COVID-19 infections per day
in three of the regions considered above: Moscow,
St. Petersburg and the Republic of Austria. The
reason for the restriction to the three regions is the
availability of sufficient WHO records correspond-
ing to the region – a record of measures used in
selected regions to contain the spread of the pan-
demic.

As a source of data on the number of new in-
fections per day for Moscow and St. Petersburg,
YAND was used; for the Republic of Austria,

JHU was used. It should be noted that there
are meaningful duplications of the same restric-
tive measures among WHO records for the regions
surveyed. Such duplications were preliminarily
deleted. Thus, 193 unique events out of 213 avail-
able were selected for Moscow, 87 out of 91 for
St. Petersburg, and 1009 out of 1145 for the Re-
public of Austria.

At the first stage of the analysis, the regres-
sion derivative [Agayan et al., 2018, 2019a,b, 2021],
which is a transfer of the classical concept of differ-
entiation to the discrete case, is calculated for the
time series from YAND. One of the free parameters
of this operation governs the choice of the scale of
“overview” of the discrete time series under study
[Agayan et al., 2021; Gvishiani et al., 2008].

The regression derivative is defined as the an-
gular coefficient of the regression tangent (linear
regression) plotted at a given point in time t to
the discrete time series plot y(t), weighted using
a proximity measure δt . The latter is one of the ba-

https://doi.org/10.2205/2023ES000839 ES2006 7 of 20



COVID-19 pandemic course 2020–2022. . . Gvishiani et al., 2023

sic concepts within the DMA [Gvishiani et al., 2008;
Kolmogorov and Fomin, 2004].

To calculate the regression derivative, the global
or local proximity measures for a discrete time se-
ries y, defined on the area of definition T , are used.
The global proximity measure is given by the for-
mula:

δt (t′) = δt (r,p) (t′)

= (1− |t′ − t|
max(maxT − t, t −minT ) + r

)
p

,

t, t′ ∈ T .

The local proximity measure is given by the for-
mula:

δt (t′) = δt (r,p) (t′)

=
{

(1− |t
′−t|
r )

p
, |t′ − t|≤ r,

0, |t′ − t|> r.
,

t, t′ ∈ T

where r is the radius of localization, and the free
parameter p will be called the regression deriva-
tive parameter. It sets the scale of the time series y
overview.

The proximity measure allows to determine the
regression tangent Ry,t (t′) = att

′ + bt to the se-
quence y at the point t as a linear regression based
on a weighted plot Γy(δt) = {(t′ , y(t′),δt(t′))}.

Finally, the regression derivative y′(t) at the
point t is called the angular coefficient at of re-
gression tangent Ry,t [Agayan et al., 2021; Gvishiani
et al., 2008].

Next, the regression derivatives of the original
time series of the number of new infections per day
were calculated:

1. for Moscow was considered a time interval
from 12.03.2020 to 01.11.2022, the parameter
of the regression derivative p = 4, localization
radius r = 14 (Figure 7). On the graph there
is also regression smoothing Ry of the original
time series, which represents the values of the
regression tangents Ry,t(t) at each point t;

2. for St. Petersburg the same interval of time se-
ries from 12.03.2020 to 01.11.2022 was taken,
the parameter of the regression derivative p =
10, localization radius r = 14 (Figure 8). The
choice here of the parameter p, which is 2.5
times larger than for Moscow, is explained by
the smaller number of restriction measures
taken for this subject and by an attempt to
isolate more detailed disturbances on a less
rugged graph;

3. for the Austrian Rep. the time series inter-
val from 22.01.2020 to 10.11.2022 was consid-
ered, the parameter of the regression deriva-
tive p = 4, localization radius r = 14 (Figure 9).

Then to the regression derivative of the time
series f (x) discrete convolution [Kolmogorov and
Fomin, 2004] was applied with a convolution ker-
nel g(−x) = (−1, 0, 1):

(f ∗ g) (x) =
∞∑

t=−∞
f (t) g (x − t) .

Peaks of the convolution function (f ∗ g)(x) indi-
cate the beginning of the decrease in the number of
new infections per day. As an example, let us com-
pare the peaks of the convolution function and the
smoothed time series of the number of new cases
per day for Moscow (Figure 10).

In the next step, the function (f ∗g)(x) is divided
by level α, to select the days of the “tops” of the
peaks (Figure 11) [Gvishiani et al., 2008].

To find the level α for the city of Moscow we take
the parameter of fuzzy comparison β = 0.035, for
St. Petersburg – β = 0.005, and for the Republic
of Austria – β = 0.023. Less stringent level α for
St. Petersburg is also associated with an attempt
to isolate less pronounced fluctuations in the time
series.

In the last step, after identifying the days when
the number of new infections per day began to de-
crease, from the total number of days is subtracted
δ, equal to the number of days required for the
coronavirus to incubate. Within the framework of
the study, the authors accepted the duration of the
incubation period equal to 7 days, as well as a win-
dow ±5 days [Rospotrebnadzor, 2023]. The dates
obtained are then compared with the dates of rele-
vant events on the list of restrictive measures from
WHO to obtain the final result.

Thus, for Moscow in the period from 12.03.2020
to 01.11.2022, which is 965 days, 254 “peak” days
were identified in terms of decreasing derivative,
when the number of new cases of infections per
day begins to decrease (Figure 12). There are 193
unique events in the WHO records over the study
period, of which 127 were identified as affecting
the decrease in the number of new infections per
day.

Based on the recognized events and their analy-
sis (Table 3), we note the following key restrictive
measures implemented by the Moscow City Gov-
ernment as effective, some of which are shown in
Figure 12:

1. electronic QR-code pass system for travel in
personal and public transport around the city
(15.04.2020);

2. tracking the movements of people with
COVID-19 symptoms using geolocation data,
and self-isolating them at home (21.04.2020);

3. 30% of employees transferred by employers to
remote work (22.09.2020);
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Figure 7: The time series graph of the number of new infections per day for Moscow from 12.03.2020
to 01.11.2022 from YAND is shown in black; its regression smoothing graph is shown in blue; the
graph of its regression derivative with the parameter p = 4 in orange.

Figure 8: The time series graph of the number of new infections per day for St. Petersburg from
12.03.2020 to 01.11.2022 from YAND is shown in black; its regression smoothing graph is shown in
blue; the graph of its regression derivative with parameter p = 10 in orange.
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Figure 9: The time series graph of the number of new infections per day for Austria Rep. from
22.01.2020 to 10.11.2022 is shown in black; its regression smoothing graph is shown in blue; its
regression derivative graph with parameter p = 4 in orange.

Figure 10: The smoothed time series graph of the number of new cases per day for Moscow from
28.09.2020 to 28.07.2021 from JHU is shown in blue; the graph of its regression derivative is shown in
orange; the graph of its convolution function with a negative trend kernel is shown in blue. The local
maxima of the convolution function indicate where the number of new infections per day began to
decline (these locations are marked by green vertical lines in the graph).
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The quantity of objects of recognition X,
changeable parameters of DPS core: β,−1 < β < 1

Treshold calculation α = α(X; β)

Allocation of the α subset of peaks
X(α) = X(X; α)

Figure 11: Block diagram of the classic level α search on the set, using the fuzzy comparison parameter
β ∈ [−1, 1]. Anomalies identified by level are shown in red. The dotted line indicates the set threshold
α = 0.3 .

4. closure of restaurants and nightlife entertain-
ment venues from 11:00 a.m. to 06:00 p.m.
until January 15, 2021, due to an outbreak of
coronavirus infection (13.11.2020);

5. tightening control over the wearing of gloves
and masks in public places (09.06.2021);

6. vaccination of workers in trade, housing and
utilities, sports, culture, education, health
care, transport (including cabs), catering, con-
sumer services, beauty industry, post office,
and MFC (16.06.2021);

7. keeping people over 60 years of age in isola-
tion with a recommendation to go outside in
extreme cases (23.01.2022);

8. Moscow residents and guests are advised to
wear protective masks in closed public places
with increased congestion (12.07.2022).

For St. Petersburg in the period from 12.03.2020
to 01.11.2022, which is 965 days, 269 “peak” days
were identified in terms of decreasing derivative,
when the number of new cases of infections per
day begins to decrease (Figure 13). There are 87

unique events in the WHO records over the study
period, of which 61 were identified as affecting the
decrease in the number of new infections per day.

Based on the recognized events and their analy-
sis (see further in Table 3), the following key re-
strictive measures implemented by the Govern-
ment of St. Petersburg were noted as effective.
Some of them are shown in Figure 13:

1. self-isolation regime is declared for residents
(30.03.2020);

2. extension of quarantine until May 31, 2020
and requirements to wear masks and gloves in
public places (11.05.2020);

3. the activities of food courts and catering fa-
cilities in shopping malls were suspended
(18.11.2020);

4. occupancy of concert halls in theaters and cin-
emas should not exceed 25% of the number of
seats in the hall (01.12.2020);

5. prohibition of restaurants and catering estab-
lishments from 19:00 to 06:00 (25.12.2020);

https://doi.org/10.2205/2023ES000839 ES2006 11 of 20
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Figure 12: The smoothed time series graph of the number of new infections per day for Moscow from
12.03.2020 to 01.11.2022 from YAND is shown in black; its convolution function graph and
highlighted peaks by threshold α in blue and red, respectively. The dates of introduction of the
selected key restrictive measures are marked with red signposts with textual explanations.

6. lifting the ban on the operation of food courts
and catering facilities, trade and services in
shopping centers; among the requirements for
companies is the vaccination of all employees
except those who have recently contracted the
disease (02.08.2021);

7. showing QR codes confirming vaccination sta-
tus or a negative PCR test to visit theaters,
cinemas, swimming pools and gyms until
November 2021 (12.10.2021).

For the Austrian Rep. (Figure 14), 311 “peak”
days in terms of decreasing derivative, when the
number of new infections per day begins to de-
crease, were highlighted for the period from Jan-
uary 22, 2020, to November 10, 2022, which is
1125 days. There are 1009 unique events in the
WHO records over the study period, of which 630
were identified as affecting the decrease in new in-
fections per day.

Based on the recognized events and their anal-
ysis (see Table 3 below), the following key restric-
tive measures implemented by the Austrian gov-
ernment were noted as effective. Some of them are
shown in Figure 14:

1. ban on flights from some countries where
COVID-19 outbreaks have occurred, as well

as a 14-day home quarantine for visitors from
high-risk countries; cancellation of outdoor
events with more than 500 participants and
indoor events with more than 100 participants
(11.03.2020);

2. providing contact information for visitors to
restaurants and bars to alert them in cases
where contamination has been detected; meet-
ings are limited to a maximum of six adults in-
doors and twelve outdoors; mandatory wear-
ing of masks in all common areas; testing
of citizens when traveling within the coun-
try; maintaining specific rules for disinfect-
ing spaces to prevent the spread of COVID-19
for all establishments; mandatory wearing of
masks by staff (23.10.2020);

3. departure from some regions is allowed only
with a negative PCR result (not older than 72
hours), with a certificate of vaccination, or af-
ter a full recovery; mandatory wearing of FF2
masks in public places and enclosed spaces
(08.11.2021).

In general, the measures in the Republic of Aus-
tria are similar to those taken in Moscow and
St. Petersburg, but in some cases reinforced mea-
sures were applied: the use of masks of protection
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Figure 13: The smoothed time series graph of the number of new infections per day for St. Petersburg
from 12.03.2020 to 01.11.2022 from YAND is shown in black; its convolution function graph and
highlighted peaks by threshold α in blue and red, respectively. Red markers with textual explanations
mark the dates of introduction of selected key restrictive measures.

class FF2 and increased control over the movement
of people within the country.

Table 3 then presents for each study region the
calculations of the percentage composition of rec-
ognized key restrictive measures, based on the
WHO classification category. Based on the created
table, a number of the following conclusions can
be made:

1. most effective are measures aimed at limiting
people’s gatherings during their daily chores,
such as going to places of work or higher edu-
cation (WHO classification code 4.2) and pub-
lic leisure activities (WHO classification code
4.3);

2. there are measures to restrict travel within the
country (WHO code 4.5), cutting off coron-
avirus traffic from metropolitan areas to the
periphery;

3. school-oriented measures (WHO code 4.1) are
relatively small in comparison. This may be
because children are more easily infected with
coronavirus, making it more difficult to de-
tect. However, we cannot rule out the fact
that adolescents infected in educational insti-
tutions carry the infection home;

4. for St. Petersburg, more measures classified as
restrictions in offices, enterprises and univer-
sities (code 4.2 according to the WHO clas-
sification) were recognized than for Moscow.
However, in Moscow, more attention is paid
to the protection of vulnerable groups (65+
years). In general, the recognized measures
percentage per WHO database categories is
similar for both regions, indicating an identi-
cal approach to hindering COVID-19 spread;

5. for the Republic of Austria, there is a rela-
tively even percentage of categories according
to the WHO classification.

3.3 Recognition of anomalous values of time se-
ries by FCARS algorithm

The time series of the number of new infec-
tions per day for the regions of the Russian Feder-
ation and the Republic of Austria that the authors
adopted in the studies were analyzed for anoma-
lies using the FCARS algorithm (Fuzzy Compari-
son Algorithm for Recognition of Signals) [Gvishi-
ani et al., 2003].

FCARS is one of the algorithms of DMA [Agayan
et al., 2018], a direction of data analysis based on
the transfer of concepts of classical mathematical
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Figure 14: The smoothed time series graph of the number of new infections per day for Austria Rep.
from 12.03.2020 to 10.11.2022 from JHU is shown in black; its convolution function graph and
highlighted peaks by threshold α in blue and red, respectively. Red markers with textual explanations
mark the dates of introduction of selected key restrictive measures.

analysis to the discrete case, developed for geo-
physical applications in the works of A. D. Gvishi-
ani, S. M. Agayan, Sh. R. Bogoutdinov, B. A. Dze-
boev, M. N. Dobrovolsky, and others. The results
of applying FCARS to the time series of data on
the number of new cases per day in the regions in
question are shown in Figure 15–20.

It is clear from the figures that the FCARS al-
gorithm identified areas of increased values of the
number of new infections per day. Such areas cor-
respond to the most severe phases of the epidemic.
The application of the FCARS algorithm makes it
possible to automatically determine the temporal
boundaries of such severe phases using retrospec-
tive data. When applied to newly reported data
on the number of new infections per day can be
used as a marker of the beginning of the next se-
vere phase of a pandemic and the adoption of ap-
propriate restrictive measures.

4 Results interpretation

According to some claims in the media, COVID-
19 morbidity is not such a serious cause of hu-
man mortality. However, when the authors com-
pare the order of values of monthly mortality from
road traffic accidents and COVID-19 in Moscow,

one can see the multifold prevalence of mortality
from the latter, as can be seen in Table 4.

The peaks of June 2021 observed in graphical vi-
sualizations of the number of new deaths per day
series in Moscow (Figure 1c) and St. Petersburg
(Figure 2c), as well as the steady growth of the to-
tal number of infected per date in Sevastopol (Fig-
ure 3d) and Crimea (Figure 4d), which began this
month, correspond chronologically to the “delta”
strain, characterized by high mortality [Adjei et al.,
2022].

The peaks at the turn of 2021 and 2022 observed
in all subjects of the Russian Federation in graph-
ical visualizations of the series of the number of
new infections (Figure 1–5a) and cures (Figure 1–
5b) chronologically correspond to the “omicron”
strain, which is characterized by high morbidity
and cure rates and low mortality, as confirmed by
studies [Adjei et al., 2022; Sklyarov, 2022].

Because of the strong positive correlation be-
tween the time series of new infections, recover-
ies and deaths per day for Moscow and St. Peters-
burg, a similar set of key restrictive measures can
be observed in similar time ranges: introduction
and control of self-isolation, closure of public eat-
ing places and restriction of the opening hours of
recreational facilities. The weak correlation be-
tween the time series of the number of new infec-
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Figure 15: The time series graph of the number of new infections per day for Moscow from 12.03.2020
to 01.11.2022 from YAND is shown in blue; anomalies identified by the FCARS algorithm are shown in
red.

Table 4: Monthly mortality from traffic accidents and COVID-19 in Moscow

Number of the
month 2022 /
deaths from:

1 2 3 4 5 6 7 8 9 10

COVID-19 2191 2314 1420 547 491 407 325 684 882 587
RTA 18 24 22 30 24 33 25 22 23 24

tions and deaths per day between any of the sub-
jects of the Russian Federation and the Republic of
Austria suggests that the course of the pandemic
is different in the compared regions, so it does not
make sense to look for a similar set of key restric-
tive measures.

By analyzing the recognized key restrictive mea-
sures identified by regression derivatives and their
percentage composition based on WHO classifica-
tion category affiliation, we can conclude that the
decisive measures affecting the reduction of new
infections per day from COVID-19 were limiting
the number of people in public, workplace and in-
tercity transport, identifying and isolating infec-
tions, and wearing personal protective equipment
and hygiene measures.

By finding the intersection of the days obtained
by regression derivatives and the FCARS algo-
rithm, we can identify key restrictive measures
that effectively influence the reduction of the num-
ber of new infections per day during the severe
phases of the pandemic. For Moscow, the list of
such measures is 91 out of 127 previously identi-

fied, for St. Petersburg it is 54 out of 61, and for
the Republic of Austria it is 297 out of 630, respec-
tively.

The method of regression derivatives and
FCARS algorithm as components of DMA will be
for the first time tested outside of geophysics prob-
lems. The algorithm is applied to time series of the
number of new cases of COVID-19 infections per
day for some regions of Russia and the Republic
of Austria. This allowed to assess the nature and
anomalies of pandemic spread as well as restric-
tive measures and decisions taken in terms of the
administration of countries and territories.
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Figure 16: The time series graph of the number of new infections per day for St. Petersburg from
12.03.2020 to 01.11.2022 from YAND is shown in blue; anomalies identified by the FCARS algorithm
are shown in red.

Figure 17: The time series graph of the number of new infections per day for Sevastopol from
12.03.2020 to 01.11.2022 from YAND is shown in blue; anomalies identified by the FCARS algorithm
are shown in red.
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Figure 18: The time series graph of the number of new infections per day for Crimea Rep. from
12.03.2020 to 01.11.2022 from YAND is shown in blue; anomalies identified by the FCARS algorithm
are shown in red.

Figure 19: The time series graph of the number of new infections per day for Kaliningrad region from
12.03.2020 to 01.11.2022 from YAND is shown in blue; anomalies identified by the FCARS algorithm
are shown in red.
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Figure 20: The time series graph of the number of new infections per day for Austria Rep. from
12.03.2020 to 01.11.2022 from JHU is shown in blue; anomalies identified by the FCARS algorithm are
shown in red.

her important contributions during the first stages
of the project.
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