Study of HIF-1α, HIF-2α and VEGF-A dynamics in plasma as potential markers of endothelial dysfunction and acute respiratory distress syndrome in patients with severe COVID-19 pneumonia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Introduction. Impaired adaptation to hypoxia in COVID-19 pneumonia may lead to endothelial dysfunction and acute respiratory distress syndrome (ARDS). In this regard, the prognostic value of determining plasma levels of HIF-1α, HIF-2α, and VEGF-A has been actively studied, but their significance in relation to the development of ARDS is poorly understood.

Aim of the study to evaluate the dynamics of HIF-1α, HIF-2α and VEGF-A in plasma of patients with COVID-19 pneumonia as potential markers of endothelial dysfunction and ARDS development.

Material and Methods. HIF-1α, HIF-2α and VEGF-A levels were studied in plasma at the time of admission and on the 7th day of treatment in 90 patients (47 women, 43 men) aged 31 to 86 years (median 65 years) with different severity of COVID-19 pneumonia (moderately severe course – 35, severe course – 28, extremely severe course – 27). The amount of HIF-1α, HIF-2α and VEGF-A was determined in blood plasma using ELISA kits.

Results. Patients with extremely severe disease had significantly lower plasma HIF-1α levels on admission than patients with moderate severity, while VEGF-A levels were significantly higher. These differences were also reflected in clinical outcomes, as HIF-1α level on admission was positively correlated with the risk of developing ARDS (r=0.483, p<0.01), while VEGF-A level was negatively correlated with ROX index (r=–0.339, p<0.05) and associated with a lower risk of developing ARDS (r=-0.378, p<0.05).

Conclusions. Patients with severe COVID-19 pneumonia have elevated levels of VEGF-A upon admission, indicating the development of endothelial dysfunction. Plasma HIF-1α and VEGF-A levels on admission, but not on day 7, are associated with the risk of ARDS in COVID-19 patients. Lower HIF-1α and higher VEGF-A at admission indicate increased risk. Evaluation of baseline and dynamics of markers of adaptation to hypoxia and development of endothelial dysfunction is important for predicting COVID-19 outcomes.

Palavras-chave

Sobre autores

S. Raitsev

Ryazan State Medical University

Autor responsável pela correspondência
Email: raitsevsergei@yandex.ru
ORCID ID: 0000-0002-6892-1768
Código SPIN: 3922-6472

Post-graduate Student, Department of Biological Chemistry

Rússia, 9 Vysokovoltnaya str., Ryazan, 390026

V. Zvyagina

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID ID: 0000-0003-2800-5789
Código SPIN: 7553-8641

Dr.Sc. (Med.), Associate Professor, Department of Biological Chemistry

Rússia, 9 Vysokovoltnaya str., Ryazan, 390026

D. Maksaev

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID ID: 0000-0003-3299-8832
Código SPIN: 9962-2923

Ph.D. (Med.), Associate Professor, Department of Cardiovascular, X-ray Endovascular Surgery and Radiation Diagnostics

Rússia, 9 Vysokovoltnaya str., Ryazan, 390026

A. Chobanian

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID ID: 0000-0002-8129-5976
Código SPIN: 4639-9650

Ph.D. (Med.), Assistant, Department of Cardiovascular, X-ray Endovascular Surgery and Radiation Diagnostics

Rússia, 9 Vysokovoltnaya str., Ryazan, 390026

O. Raitseva

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID ID: 0009-0001-0664-6211

Student, Faculty of Pediatrics

Rússia, 9 Vysokovoltnaya str., Ryazan, 390026

Bibliografia

  1. Somers V.K., Kara T., Xie J. Progressive Hypoxia: A Pivotal Pathophysiologic Mechanism of COVID-19 Pneumonia. Mayo Clin Proc. 2020; 95(11): 2339–2342. doi: 10.1016/j.mayocp.2020.09.015.
  2. Любавин А.В., Котляров С.Н. Особенности течения острого коронарного синдрома у пациентов с новой коронавирусной инфекцией COVID-19. Наука молодых (Eruditio Juvenium). 2022; 10(1): 101–112. [Lyubavin A.V., Kotlyarov S.N. Peculiarities of the Course of Acute Coronary Syndrome in Patients with New Coronavirus Infection. Science of the young (Eruditio Juvenium). 2022; 10(1): 101–112. (In Russ.)]. doi: 10.23888/HMJ2022101101-112.
  3. Semenza G.L. HIF-1 and mechanisms of hypoxia sensing. CurrOpin Cell Biol. 2001; 13(2): 167–171. doi: 10.1016/s0955-0674(00)00194-0.
  4. Калинин Р.Е., Сучков И.А., Райцев С.Н. и др. Роль фактора, индуцируемого гипоксией, 1α при адаптации к гипоксии в патогенезе новой коронавирусной болезни 2019. Российский медико-биологический вестник имени академика И.П. Павлова, 2024; 32(1): 133–144. [Kalinin R.E., Suchkov I.A., Raitsev S.N. et al. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in Pathogenesis of Novel Coronavirus Disease 2019. I. P. Pavlov Russian Medical Biological Herald. 2024; 32(1): 133–144. (In Russ.)]. doi: 10.17816/PAVLOVJ165536.
  5. Prabhakar N.R, Semenza G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological reviews. 2012; 92(3): 967–1003. doi: 10.1152/physrev.00030.2011.
  6. Norooznezhad A.H., Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res. 2021; 137: 104188. doi: 10.1016/j.mvr.2021.104188.
  7. Plank M., Sleeman B. Tumour-induced angiogenesis: a review. J. Theor. Med. 2003; 5: 137–153. doi: 10.1080/10273360410001700843.
  8. Hubmacher D., Apte S.S. The biology of the extracellular matrix: novel insights. Curr. Opin. Rheumatol. 2013; 25: 65–70. doi: 10.1097/BOR.0b013e32835b137b.
  9. Galván-Peña S., O'Neill L.A.J. Metabolic reprograming in macrophage polarization. Frontiers in immunology. 2014; 5: 420. doi: 10.3389/fimmu.2014.00420.
  10. Волчкова Е.В., Кузубова Н.А., Александрович Ю.С. и др. Роль HIF-1α в иммунопатогенезе SARS-COV-2-пневмонии. Анестезиология и реаниматология. 2022; 5: 71–78. [Volchkova E. V., Kuzubova N. A., Aleksandrovich Y. S. et al. HIF-1α in immune pathogenesis of SARS-CoV-2-pneumonia. Anesteziologiya I Reanimatologiya. 2022; 5: 71–78. (In Russ.)]. doi: 10.17116/anaesthesiology202205171.
  11. Gupta N., Zhao Y.Y., Evans C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019; 181: 77–83. doi: 10.1016/j.thromres.2019.07.013.
  12. Ashina K., Tsubosaka Y., Kobayashi K. et al. VEGF-induced blood flow increase causes vascular hyper-permeability in vivo. Biochem Biophys Res Commun. 2015; 464(2): 590–595. doi: 10.1016/j.bbrc.2015.07.014.
  13. Tomita K., Saito Y., Suzuki T. et al. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393: 2365–2374. doi: 10.1007/s00210-020-01947-6.
  14. Kristensen M.K., Plovsing R.R., Berg R.M.G. et al. Cell adhesion molecules and vascular endothelial growth factor at the systemic and alveolar level in coronavirus disease 2019 acute respiratory distress syndrome. J Infect Dis. 2021; 224(6): 1101–1103. doi: 10.1093/infdis/jiab347.
  15. Bernard I., Limonta D., Mahal L.K. et al. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses. 2020; 13(1): 29. doi: 10.3390/v13010029.
  16. Maciejewska M., Sikora M., Stec A. et al. Hypoxia-Inducible Factor-1α (HIF-1α) as a Biomarker for Changes in Microcirculation in Individuals with Systemic Sclerosis. Dermatol Ther (Heidelb). 2023; 13(7): 1549–1560. doi: 10.1007/s13555-023-00952-w.
  17. Bahreiny S.S., Bastani M.N., Keyvani H. et al. VEGF-A in COVID-19: a systematic review and meta-analytical approach to its prognostic value. Clin Exp Med. 2025; 25(1): 81. doi: 10.1007/s10238-025-01583-5.
  18. Райцев С.Н., Звягина В.И., Бельских Э.С. и др. Исследование компонентов HIF-1α-сигнального пути в плазме крови у пациентов с COVID-19 инфекцией различной степени тяжести. Вопросы биологической, медицинской и фармацевтической химии. 2024; 27(4): 57−62. [Raitsev S.N., Zvyagina V.I., Belskikh E.S. et al. Study of HIF-1αsignaling pathway components in plasma of patients with COVID-19 infection of different degrees of severity. Problems of biological, medical and pharmaceutical chemistry. 2024; 27(4): 57−62. (In Russ.)]. doi: 10.29296/25877313-2024-04-08.
  19. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 10 от 08.02.2021. [Vremenny`e metodicheskie rekomendacii: Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19), versiya 10 ot 08.02.2021. (In Russ.)] from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/Временные_МР_COVID-19_%28v.10%29.PDF.
  20. Charlson M., Wells M.T., Ullman R. et al. The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs. PLoS One. 2014; 9(12): e112479. doi: 10.1371/journal.pone.0112479.
  21. Tarabeih M., Qaddumi J., Mohammad Tukhi I. et al. NEWS-2 Accuracy in Predicting Mortality and Severe Morbidity Among Hospitalized COVID-19 Patients: A Prospective Cohort Study. Journal of clinical medicine. 2024; 13(21): 6558. doi: 10.3390/jcm13216558
  22. Xu N., Zhang J.X., Zhang J.J. et al. The prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in colorectal cancer and colorectal anastomotic leakage patients: a retrospective study. BMC surgery. 2025; 25(1): 57. doi: 10.1186/s12893-024-02708-5.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».