Analysis of the Problem of Stability of Thin Shells Compliant to Shear and Compression
- Авторы: Bernakevych I.Y.1, Vahin P.P.1, Kozii I.Y.1, Kharchenko V.M.1
-
Учреждения:
- I. Franko Lviv National University
- Выпуск: Том 238, № 2 (2019)
- Страницы: 108-115
- Раздел: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242486
- DOI: https://doi.org/10.1007/s10958-019-04221-0
- ID: 242486
Цитировать
Аннотация
The problem of stability of shells compliant to shear and compression is studied by the finite-element method. On the basis of relations of the geometrically nonlinear theory of thin shells compliant to shear and compression (six-mode version), we write the key equations for the determination of their initial postcritical state and formulate the corresponding variational problem. A numerical scheme of the finite-element method is constructed for the solution of the problems of stability of these shells. The order of the rate of convergence of the scheme proposed for the numerical solution of the problems of stability is investigated.
Об авторах
I. Bernakevych
I. Franko Lviv National University
Email: Jade.Santos@springer.com
Украина, Lviv
P. Vahin
I. Franko Lviv National University
Email: Jade.Santos@springer.com
Украина, Lviv
I. Kozii
I. Franko Lviv National University
Email: Jade.Santos@springer.com
Украина, Lviv
V. Kharchenko
I. Franko Lviv National University
Email: Jade.Santos@springer.com
Украина, Lviv
Дополнительные файлы
