On Coarse Grid Correction Methods in Krylov Subspaces
- Авторы: Gurieva Y.L.1,2, Il’in V.P.1,2
-
Учреждения:
- Institute of Computational Mathematics and Mathematical Geophysics SO RAS
- Novosibirsk State University
- Выпуск: Том 232, № 6 (2018)
- Страницы: 774-782
- Раздел: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241433
- DOI: https://doi.org/10.1007/s10958-018-3907-9
- ID: 241433
Цитировать
Аннотация
Two approaches using coarse grid correction in the course of a certain Krylov iterative process are presented. The aim of the correction is to accelerate the iterations. These approaches are based on an approximation of the function sought for by simple basis functions having finite supports. Additional acceleration can be achieved if the iterative process is restarted and the approximate solution is refined. In this case, the resulting process turns out to be a two-level preconditioned method. The influence of different parameters of the iterative process on its convergence is demonstrated by numerical results.
Об авторах
Y. Gurieva
Institute of Computational Mathematics and Mathematical Geophysics SO RAS; Novosibirsk State University
Автор, ответственный за переписку.
Email: yana@lapasrv.sscc.ru
Россия, Novosibirsk; Novosibirsk
V. Il’in
Institute of Computational Mathematics and Mathematical Geophysics SO RAS; Novosibirsk State University
Email: yana@lapasrv.sscc.ru
Россия, Novosibirsk; Novosibirsk
Дополнительные файлы
