Pseudo-Parabolic Regularization of Forward-Backward Parabolic Equations with Bounded Nonlinearities


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the initial-boundary value problem

\( \Big\{{\displaystyle \begin{array}{l} ut={\left[\varphi (u)\right]}_{xx}+\varepsilon {\left[\psi (u)\right]}_{txx}\kern1em \mathrm{in}\;\varOmega \times \left(0,T\right]\\ {}\varphi (u)+\varepsilon {\left[\psi (u)\right]}_t=0\kern3em \mathrm{in}\;\partial \varOmega \times \left(0,T\right]\\ {}u={u}_0\ge 0\kern7em \mathrm{in}\;\varOmega \times \left\{0\right\},\end{array}} \)

with Radon measure-valued initial data, by assuming that the regularizing term ψ is bounded and increasing (the cases of power-type or logarithmic ψ were examined in [2, 3] for spaces on any dimension). The function ???? is nonmonotone and bounded, and either (i) decreases and vanishes at infinity, or (ii) increases at infinity. The existence of solutions in a space of positive Radon measures is proved in both cases. Moreover, a general result on the spontaneous appearance of singularities in he case (i) is presented. The case of a cubic-like ???? is also discussed to point out the influence of the behavior at infinity of ???? on the regularity of solutions.

Sobre autores

A. Tesei

Istituto per le Applicazioni del Calcolo “M. Picone,”, Consiglio Nazionale delle Ricerche

Autor responsável pela correspondência
Email: albertotesei@gmail.com
Itália, Rome

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018