To the problem of extremal partition of the complex plane


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider one of the classical problems of the geometric theory of functions of a complex variable on a maximum of the functional

\( {\left[r\left({B}_0.0\right)r\left({B}_{\infty },\infty \right)\right]}^{\upgamma}\prod \limits_{k=1}^nr\left({B}_k,{a}_k\right), \)

where n ∈ ℕ, n ≥ 2, γ ∈ ℝ+, \( {A}_n={\left\{{a}_k\right\}}_{k=1}^n \) is a system of points such that |ak| = 1, a0 = 0, B0, B, \( {\left\{{B}_k\right\}}_{k=1}^n \) is a system of pairwise nonoverlapping domains, \( {a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}} \), \( k=\overline{0,n} \), \( \infty \in {B}_{\infty}\subset \overline{\mathrm{\mathbb{C}}} \), r(B, a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. We have analyzed this problem under some weaker restrictions on pairwise nonoverlapping domains.

Sobre autores

Iryna Denega

Institute of Mathematics of the NAS of Ukraine

Autor responsável pela correspondência
Email: iradenega@gmail.com
Ucrânia, Kiev

Bogdan Klishchuk

Institute of Mathematics of the NAS of Ukraine

Email: iradenega@gmail.com
Ucrânia, Kiev

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018