To the problem of extremal partition of the complex plane
- Autores: Denega I.V.1, Klishchuk B.A.1
-
Afiliações:
- Institute of Mathematics of the NAS of Ukraine
- Edição: Volume 234, Nº 1 (2018)
- Páginas: 14-20
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241741
- DOI: https://doi.org/10.1007/s10958-018-3977-8
- ID: 241741
Citar
Resumo
We consider one of the classical problems of the geometric theory of functions of a complex variable on a maximum of the functional
where n ∈ ℕ, n ≥ 2, γ ∈ ℝ+, \( {A}_n={\left\{{a}_k\right\}}_{k=1}^n \) is a system of points such that |ak| = 1, a0 = 0, B0, B∞, \( {\left\{{B}_k\right\}}_{k=1}^n \) is a system of pairwise nonoverlapping domains, \( {a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}} \), \( k=\overline{0,n} \), \( \infty \in {B}_{\infty}\subset \overline{\mathrm{\mathbb{C}}} \), r(B, a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. We have analyzed this problem under some weaker restrictions on pairwise nonoverlapping domains.
Sobre autores
Iryna Denega
Institute of Mathematics of the NAS of Ukraine
Autor responsável pela correspondência
Email: iradenega@gmail.com
Ucrânia, Kiev
Bogdan Klishchuk
Institute of Mathematics of the NAS of Ukraine
Email: iradenega@gmail.com
Ucrânia, Kiev
Arquivos suplementares
