Serial Group Rings of Finite Simple Groups of Lie Type
- Autores: Kukharev A.V.1, Puninski G.E.2
-
Afiliações:
- Department of Mathematics, Vitebsk State University
- Department of Mechanics and Mathematics, Belarusian State University
- Edição: Volume 233, Nº 5 (2018)
- Páginas: 695-701
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241639
- DOI: https://doi.org/10.1007/s10958-018-3957-z
- ID: 241639
Citar
Resumo
Suppose that F is a field whose characteristic p divides the order of a finite group G. It is shown that if G is one of the groups 3D4(q), E6(q), 2E6(q), E7(q), E8(q), F4(q), 2F4(q), or 2G2(q), then the group ring FG is not serial. If G = G2(q2), then the ring FG is serial if and only if either p > 2 divides q2− 1, or p = 7 divides \( {q}^2+\sqrt{3q}+1 \) but 49 does not divide this number.
Sobre autores
A. Kukharev
Department of Mathematics, Vitebsk State University
Autor responsável pela correspondência
Email: kukharev.av@mail.ru
Belarus, Moscow Avenue 33, Vitebsk, 210038
G. Puninski
Department of Mechanics and Mathematics, Belarusian State University
Email: kukharev.av@mail.ru
Belarus, Nezavisimosti Avenue 4, Minsk, 220030
Arquivos suplementares
