Integer Solutions of Matrix Linear Unilateral and Bilateral Equations over Quadratic Rings
- Autores: Ladzoryshyn N.B.1
-
Afiliações:
- Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Edição: Volume 223, Nº 1 (2017)
- Páginas: 50-59
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/239292
- DOI: https://doi.org/10.1007/s10958-017-3337-0
- ID: 239292
Citar
Resumo
For matrix linear equations AX + BY = C and AX + YB = C over quadratic rings \( \mathbb{Z}\left[\sqrt{k}\right] \), we establish necessary and sufficient conditions for the existence of integer solutions, i.e., solutions X and Y over the ring of integers \( \mathbb{Z} \). We also present the criteria of uniqueness of the integer solutions of these equations and the method for their construction.
Sobre autores
N. Ladzoryshyn
Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Email: Jade.Santos@springer.com
Ucrânia, Lviv
Arquivos suplementares
