Integer Solutions of Matrix Linear Unilateral and Bilateral Equations over Quadratic Rings


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For matrix linear equations AX + BY = C and AX + YB = C over quadratic rings \( \mathbb{Z}\left[\sqrt{k}\right] \), we establish necessary and sufficient conditions for the existence of integer solutions, i.e., solutions X and Y over the ring of integers \( \mathbb{Z} \). We also present the criteria of uniqueness of the integer solutions of these equations and the method for their construction.

Sobre autores

N. Ladzoryshyn

Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences

Email: Jade.Santos@springer.com
Ucrânia, Lviv

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017