Asymptotics of Eigenvalues in Spectral Gaps of Periodic Waveguides with Small Singular Perturbations
- Авторлар: Nazarov S.A.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 243, № 5 (2019)
- Беттер: 746-773
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/243156
- DOI: https://doi.org/10.1007/s10958-019-04576-4
- ID: 243156
Дәйексөз келтіру
Аннотация
The asymptotics of eigenvalues appearing near the lower edge of a spectral gap of the Dirichlet problem is studied for the Laplace operator in a d-dimensional periodic waveguide with a singular perturbation of the boundary by creating a hole with a small diameter ε. Several versions of the structure of the gap edge are considered. As usual, the asymptotic formulas are different in the cases d ≥ 3 and d = 2, where the eigenvalues occur at distances O(ε2(d−2)) or O(ε2d) and O(|ln ε|−2) or O(ε4), respectively, from the gap edge. Other types of singular perturbation of the waveguide surface and other types of boundary conditions are discussed, which provide the appearance of eigenvalues near both edges of one or several gaps.
Авторлар туралы
S. Nazarov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: srgnazarov@yahoo.co.uk
Ресей, St. Petersburg
Қосымша файлдар
