On Asymptotics of Solutions to Some Linear Differential Equations
- Авторлар: Mirzoev K.A.1, Konechnaya N.N.2, Safonova T.A.2, Tagirova R.N.2
-
Мекемелер:
- M. V. Lomonosov Moscow State University
- M. V. Lomonosov Northern (Arctic) Federal University
- Шығарылым: Том 241, № 5 (2019)
- Беттер: 614-621
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242928
- DOI: https://doi.org/10.1007/s10958-019-04451-2
- ID: 242928
Дәйексөз келтіру
Аннотация
In this paper, we find the principal asymptotic term at infinity of a certain fundamental system of solutions to the equation l2n[y] = λy of order 2n, where l2n is the product of second-order linear differential expressions and λ is a fixed complex number. We assume that the coefficients of these differential expressions are not necessarily smooth but have a prescribed power growth at infinity. The asymptotic formulas obtained are applied for the problem on the defect index of differential operators in the case where l2n is a symmetric (formally self-adjoint) differential expression.
Авторлар туралы
K. Mirzoev
M. V. Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: mirzoev.karahan@mail.ru
Ресей, Moscow
N. Konechnaya
M. V. Lomonosov Northern (Arctic) Federal University
Email: mirzoev.karahan@mail.ru
Ресей, Arkhangelsk
T. Safonova
M. V. Lomonosov Northern (Arctic) Federal University
Email: mirzoev.karahan@mail.ru
Ресей, Arkhangelsk
R. Tagirova
M. V. Lomonosov Northern (Arctic) Federal University
Email: mirzoev.karahan@mail.ru
Ресей, Arkhangelsk
Қосымша файлдар
