On Analytical in a Sector Resolving Families of Operators for Strongly Degenerate Evolution Equations of Higher and Fractional Orders


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we study a class of linear evolution equations of fractional order that are degenerate on the kernel of the operator under the sign of the derivative and on its relatively generalized eigenvectors. We prove that in the case considered, in contrast to the case of first-order degenerate equations and equations of fractional order with weak degeneration (i.e., degeneration only on the kernel of the operator under the sign of the derivative), the family of analytical in a sector operators does not vanish on relative generalized eigenspaces of the operator under the sign of the derivative, has a singularity at zero, and hence does not determine any solution of a strongly degenerate equation of fractional order. For the case of a strongly degenerate equation of integer order this fact does not hold, but the behavior of the family of resolving operators at zero cannot be examined by ordinary method.

Авторлар туралы

V. Fedorov

Chelyabinsk State University; South Ural State University

Хат алмасуға жауапты Автор.
Email: kar@csu.ru
Ресей, Chelyabinsk; Chelyabinsk

E. Romanova

Chelyabinsk State University

Email: kar@csu.ru
Ресей, Chelyabinsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018