Group Ring Ideals Related to Reed–Muller Codes
- Авторлар: Tumaykin I.N.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 233, № 5 (2018)
- Беттер: 745-748
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241669
- DOI: https://doi.org/10.1007/s10958-018-3962-2
- ID: 241669
Дәйексөз келтіру
Аннотация
Reed–Muller codes are one of the most well-studied families of codes; however, there are till open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes ℳπ(m, k) over a prime field are powers of the radical RS of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals ℜSℳπ(m, k) that arise while studying the inclusions of the basic codes and radical powers.
Авторлар туралы
I. Tumaykin
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: itumaykin@gmail.com
Ресей, Moscow
Қосымша файлдар
