Group Ring Ideals Related to Reed–Muller Codes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Reed–Muller codes are one of the most well-studied families of codes; however, there are till open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes ℳπ(m, k) over a prime field are powers of the radical RS of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals ℜSπ(m, k) that arise while studying the inclusions of the basic codes and radical powers.

Авторлар туралы

I. Tumaykin

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: itumaykin@gmail.com
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018