The Riesz Basis Property with Brackets for Dirac Systems with Summable Potentials


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the space ℍ = (L2[0, π])2, we study the Dirac operator \( {\mathrm{\mathcal{L}}}_{P,U} \) generated by the differential expression ℓP(y) = By′ + Py, where

\( B=\left(\begin{array}{cc}-i& 0\\ {}0& i\end{array}\right),\kern0.5em P(x)=\left(\begin{array}{cc}{p}_1(x)& {p}_2(x)\\ {}{p}_3(x)& {p}_4(x)\end{array}\right),\kern0.5em \mathbf{y}(x)=\left(\begin{array}{c}{y}_1(x)\\ {}{y}_2(x)\end{array}\right), \)

and the regular boundary conditions

\( U\left(\mathbf{y}\right)=\left(\begin{array}{cc}{u}_{11}& {u}_{12}\\ {}{u}_{21}& {u}_{22}\end{array}\right)\left(\begin{array}{c}{y}_1(0)\\ {}{y}_2(0)\end{array}\right)+\left(\begin{array}{cc}{u}_{13}& {u}_{14}\\ {}{u}_{23}& {u}_{24}\end{array}\right)\left(\begin{array}{c}{y}_1\left(\uppi \right)\\ {}{y}_2\left(\uppi \right)\end{array}\right)=0. \)

The elements of the matrix P are assumed to be complex-valued functions summable over [0, π]. We show that the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is discrete and consists of eigenvalues {λn}n ∈ ℤ such that \( {\uplambda}_n={\uplambda}_n^0+o(1) \) as |n| → ∞, where \( {\left\{{\uplambda}_n^0\right\}}_{n\in \mathrm{\mathbb{Z}}} \) is the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) forms a Riesz base in the space ℍ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{0,U} \) are double, all eigenvalues of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator \( {\mathrm{\mathcal{L}}}_{P,U} \) is a Riesz base of subspaces (Riesz base with brackets) in the space ℍ.

Авторлар туралы

A. Savchuk

M. V. Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: artem_savchuk@mail.ru
Ресей, Moscow

I. Sadovnichaya

M. V. Lomonosov Moscow State University

Email: artem_savchuk@mail.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018