Linear Wavefronts of Convex Polyhedra


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let M ⊂ ℝn be a convex polyhedron, i.e., the intersection of a finite number of closed half-spaces that is bounded and has nonempty interior. Let each hyperplane of the hyperfaces f1, . . . , fm of M move inwards M in a self-parallel fashion at a constant nonnegative speed (it is assumed that at least one face has nonzero speed). This yields a “shrinking” polyhedron. Let reg(f1), . . . , reg(fm) be the parts of M (with disjoint interiors) swept by the faces f1, . . . , fm during the “shrinking” process. The main result is as follows. Let F be a functional on the class of convex compact subsets in ℝn. It is assumed that F is nonnegative and continuous (with respect to the Hausdorff metric) and, furthermore, F(K) = 0 if and only if dim(K) < n. Then for each m-tuple (x1, . . . , xm) of nonnegative reals with nonzero sum there exists an m-tuple of “velocities” for the faces f1, . . . , fm such that the m-tuple (F(reg(f1)), . . . , F(reg(fm))) is proportional to (x1, . . . , xm). Bibliography: 1 title.

Авторлар туралы

V. Makeev

St.Petersburg State University

Хат алмасуға жауапты Автор.
Email: mvv57@inbox.ru
Ресей, St.Petersburg

I. Makeev

SPbGU ITMO

Email: mvv57@inbox.ru
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016